{"title":"加权网络的复合泊松模型及其在金融中的应用","authors":"A. Gandy, L. Veraart","doi":"10.2139/ssrn.3401059","DOIUrl":null,"url":null,"abstract":"We develop a modelling framework for estimating and predicting weighted network data. The edge weights in weighted networks often arise from aggregating some individual relationships between the nodes. Motivated by this, we introduce a modelling framework for weighted networks based on the compound Poisson distribution. To allow for heterogeneity between the nodes, we use a regression approach for the model parameters. We test the new modelling framework on two types of financial networks: a network of financial institutions in which the edge weights represent exposures from trading Credit Default Swaps and a network of countries in which the edge weights represent cross-border lending. The compound Poisson Gamma distributions with regression fit the data well in both situations. We illustrate how this modelling framework can be used for predicting unobserved edges and their weights in an only partially observed network. This is for example relevant for assessing systemic risk in financial networks.","PeriodicalId":48722,"journal":{"name":"Mathematics and Financial Economics","volume":"11 1","pages":"131-153"},"PeriodicalIF":0.9000,"publicationDate":"2020-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Compound Poisson models for weighted networks with applications in finance\",\"authors\":\"A. Gandy, L. Veraart\",\"doi\":\"10.2139/ssrn.3401059\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We develop a modelling framework for estimating and predicting weighted network data. The edge weights in weighted networks often arise from aggregating some individual relationships between the nodes. Motivated by this, we introduce a modelling framework for weighted networks based on the compound Poisson distribution. To allow for heterogeneity between the nodes, we use a regression approach for the model parameters. We test the new modelling framework on two types of financial networks: a network of financial institutions in which the edge weights represent exposures from trading Credit Default Swaps and a network of countries in which the edge weights represent cross-border lending. The compound Poisson Gamma distributions with regression fit the data well in both situations. We illustrate how this modelling framework can be used for predicting unobserved edges and their weights in an only partially observed network. This is for example relevant for assessing systemic risk in financial networks.\",\"PeriodicalId\":48722,\"journal\":{\"name\":\"Mathematics and Financial Economics\",\"volume\":\"11 1\",\"pages\":\"131-153\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2020-04-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematics and Financial Economics\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3401059\",\"RegionNum\":3,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BUSINESS, FINANCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics and Financial Economics","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.2139/ssrn.3401059","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
Compound Poisson models for weighted networks with applications in finance
We develop a modelling framework for estimating and predicting weighted network data. The edge weights in weighted networks often arise from aggregating some individual relationships between the nodes. Motivated by this, we introduce a modelling framework for weighted networks based on the compound Poisson distribution. To allow for heterogeneity between the nodes, we use a regression approach for the model parameters. We test the new modelling framework on two types of financial networks: a network of financial institutions in which the edge weights represent exposures from trading Credit Default Swaps and a network of countries in which the edge weights represent cross-border lending. The compound Poisson Gamma distributions with regression fit the data well in both situations. We illustrate how this modelling framework can be used for predicting unobserved edges and their weights in an only partially observed network. This is for example relevant for assessing systemic risk in financial networks.
期刊介绍:
The primary objective of the journal is to provide a forum for work in finance which expresses economic ideas using formal mathematical reasoning. The work should have real economic content and the mathematical reasoning should be new and correct.