B. Behrens, K. Brunotte, H. Wester, E. Stockburger
{"title":"形变诱导铁素体提高冲压硬化件焊接性能的工艺窗口研究","authors":"B. Behrens, K. Brunotte, H. Wester, E. Stockburger","doi":"10.37904/metal.2020.3523","DOIUrl":null,"url":null,"abstract":"Due to their high tensile strengths increasing the crashworthiness of the vehicles, ultra-high strength steels are increasingly used in the automotive industry, for example in components like B-pillars or tunnel. 22MnB5 is a premier candidate for this cause, since it can be press-hardened and phase-transformed into the martensitic phase, resulting in high hardness and tensile strength. However, complications can arise in the assembly of press-hardened components since conventional mechanical joining processes have their limitations due to high forces required for joining press-hardened steels, especially in multi-sheet layers. Therefore, this study focuses on the determination of an optimum process window to influence the 22MnB5 microstructure thermo-mechanically during press hardening, causing a local softening. This so-called deformation-induced ferrite improves ductility at the desired locations to ease the mechanical joining operation in the assembly. Investigations are performed on a forming dilatometer varying the cooling rate, the introduced amount of plastic strain and the forming temperature along with metallographic as well as microhardness measurements. Based on the laboratory tests, a process window of the deformation induced ferrite is derived for an application in a forming press.","PeriodicalId":18449,"journal":{"name":"METAL 2020 Conference Proeedings","volume":"449 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"INVESTIGATION OF THE PROCESS WINDOW FOR DEFORMATION INDUCED FERRITE TO IMPROVE THE JOINABILITY OF PRESS-HARDENED COMPONENTS\",\"authors\":\"B. Behrens, K. Brunotte, H. Wester, E. Stockburger\",\"doi\":\"10.37904/metal.2020.3523\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Due to their high tensile strengths increasing the crashworthiness of the vehicles, ultra-high strength steels are increasingly used in the automotive industry, for example in components like B-pillars or tunnel. 22MnB5 is a premier candidate for this cause, since it can be press-hardened and phase-transformed into the martensitic phase, resulting in high hardness and tensile strength. However, complications can arise in the assembly of press-hardened components since conventional mechanical joining processes have their limitations due to high forces required for joining press-hardened steels, especially in multi-sheet layers. Therefore, this study focuses on the determination of an optimum process window to influence the 22MnB5 microstructure thermo-mechanically during press hardening, causing a local softening. This so-called deformation-induced ferrite improves ductility at the desired locations to ease the mechanical joining operation in the assembly. Investigations are performed on a forming dilatometer varying the cooling rate, the introduced amount of plastic strain and the forming temperature along with metallographic as well as microhardness measurements. Based on the laboratory tests, a process window of the deformation induced ferrite is derived for an application in a forming press.\",\"PeriodicalId\":18449,\"journal\":{\"name\":\"METAL 2020 Conference Proeedings\",\"volume\":\"449 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"METAL 2020 Conference Proeedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37904/metal.2020.3523\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"METAL 2020 Conference Proeedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37904/metal.2020.3523","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
INVESTIGATION OF THE PROCESS WINDOW FOR DEFORMATION INDUCED FERRITE TO IMPROVE THE JOINABILITY OF PRESS-HARDENED COMPONENTS
Due to their high tensile strengths increasing the crashworthiness of the vehicles, ultra-high strength steels are increasingly used in the automotive industry, for example in components like B-pillars or tunnel. 22MnB5 is a premier candidate for this cause, since it can be press-hardened and phase-transformed into the martensitic phase, resulting in high hardness and tensile strength. However, complications can arise in the assembly of press-hardened components since conventional mechanical joining processes have their limitations due to high forces required for joining press-hardened steels, especially in multi-sheet layers. Therefore, this study focuses on the determination of an optimum process window to influence the 22MnB5 microstructure thermo-mechanically during press hardening, causing a local softening. This so-called deformation-induced ferrite improves ductility at the desired locations to ease the mechanical joining operation in the assembly. Investigations are performed on a forming dilatometer varying the cooling rate, the introduced amount of plastic strain and the forming temperature along with metallographic as well as microhardness measurements. Based on the laboratory tests, a process window of the deformation induced ferrite is derived for an application in a forming press.