相对2神经

F. Garc'ia, Tobias Dyckerhoff, Walker H. Stern
{"title":"相对2神经","authors":"F. Garc'ia, Tobias Dyckerhoff, Walker H. Stern","doi":"10.2140/agt.2020.20.3147","DOIUrl":null,"url":null,"abstract":"In this work, we introduce a 2-categorical variant of Lurie's relative nerve functor. We prove that it defines a right Quillen equivalence which, upon passage to $\\infty$-categorical localizations, corresponds to Lurie's scaled unstraightening equivalence. In this $\\infty$-bicategorical context, the relative 2-nerve provides a computationally tractable model for the Grothendieck construction which becomes equivalent, via an explicit comparison map, to Lurie's relative nerve when restricted to 1-categories.","PeriodicalId":8433,"journal":{"name":"arXiv: Algebraic Topology","volume":"110 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A relative 2–nerve\",\"authors\":\"F. Garc'ia, Tobias Dyckerhoff, Walker H. Stern\",\"doi\":\"10.2140/agt.2020.20.3147\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we introduce a 2-categorical variant of Lurie's relative nerve functor. We prove that it defines a right Quillen equivalence which, upon passage to $\\\\infty$-categorical localizations, corresponds to Lurie's scaled unstraightening equivalence. In this $\\\\infty$-bicategorical context, the relative 2-nerve provides a computationally tractable model for the Grothendieck construction which becomes equivalent, via an explicit comparison map, to Lurie's relative nerve when restricted to 1-categories.\",\"PeriodicalId\":8433,\"journal\":{\"name\":\"arXiv: Algebraic Topology\",\"volume\":\"110 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Algebraic Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/agt.2020.20.3147\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Algebraic Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/agt.2020.20.3147","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

在这项工作中,我们介绍了Lurie相对神经函子的2分类变体。我们证明了它定义了一个右Quillen等价,该等价在通过$\infty$ -范畴定位后,对应于Lurie的尺度不拉直等价。在这个$\infty$ -双范畴的背景下,相对的2-神经为Grothendieck结构提供了一个计算上易于处理的模型,通过一个明确的比较图,当限制在1类别时,它与Lurie的相对神经等效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A relative 2–nerve
In this work, we introduce a 2-categorical variant of Lurie's relative nerve functor. We prove that it defines a right Quillen equivalence which, upon passage to $\infty$-categorical localizations, corresponds to Lurie's scaled unstraightening equivalence. In this $\infty$-bicategorical context, the relative 2-nerve provides a computationally tractable model for the Grothendieck construction which becomes equivalent, via an explicit comparison map, to Lurie's relative nerve when restricted to 1-categories.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信