基于元模型的金属成形应用的多目标优化

Mohsen Ejday, Lionel Fourment
{"title":"基于元模型的金属成形应用的多目标优化","authors":"Mohsen Ejday, Lionel Fourment","doi":"10.1051/MECA/2010040","DOIUrl":null,"url":null,"abstract":"To apply multi-objective optimization algorithms to highly time expensive metal forming applications, the coupling of the NSGA-II genetic algorithm proposed by Deb with metamodels based on the Meshless Finite Difference Method (MFDM) proposed by Liszka and Orkisz is investigated. The importance of iteratively improving the metamodel during the optimization iterations is highlighted, as well as the capability to accurately determine the Pareto optimal fronts of the studied problems within less than hundred calculations.","PeriodicalId":49847,"journal":{"name":"Mecanique & Industries","volume":"15 1","pages":"223-233"},"PeriodicalIF":0.0000,"publicationDate":"2010-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Optimisation multi-objectifs à base de métamodèle pour des applications en mise en forme des métaux\",\"authors\":\"Mohsen Ejday, Lionel Fourment\",\"doi\":\"10.1051/MECA/2010040\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To apply multi-objective optimization algorithms to highly time expensive metal forming applications, the coupling of the NSGA-II genetic algorithm proposed by Deb with metamodels based on the Meshless Finite Difference Method (MFDM) proposed by Liszka and Orkisz is investigated. The importance of iteratively improving the metamodel during the optimization iterations is highlighted, as well as the capability to accurately determine the Pareto optimal fronts of the studied problems within less than hundred calculations.\",\"PeriodicalId\":49847,\"journal\":{\"name\":\"Mecanique & Industries\",\"volume\":\"15 1\",\"pages\":\"223-233\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mecanique & Industries\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1051/MECA/2010040\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mecanique & Industries","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/MECA/2010040","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

为了将多目标优化算法应用于高时间昂贵的金属成形应用,研究了Deb提出的NSGA-II遗传算法与Liszka和Orkisz提出的基于无网格有限差分法(MFDM)的元模型的耦合。强调了在优化迭代过程中迭代改进元模型的重要性,以及在不到100次计算中准确确定所研究问题的Pareto最优前沿的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimisation multi-objectifs à base de métamodèle pour des applications en mise en forme des métaux
To apply multi-objective optimization algorithms to highly time expensive metal forming applications, the coupling of the NSGA-II genetic algorithm proposed by Deb with metamodels based on the Meshless Finite Difference Method (MFDM) proposed by Liszka and Orkisz is investigated. The importance of iteratively improving the metamodel during the optimization iterations is highlighted, as well as the capability to accurately determine the Pareto optimal fronts of the studied problems within less than hundred calculations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mecanique & Industries
Mecanique & Industries 工程技术-工程:机械
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信