K. Janeczek, A. Arazna, Yan Zhang, Shiwei Ma, J. Sitek, Jing-yu Fan, Johan Liu, K. Lipiec
{"title":"微纳米颗粒增强热界面材料的研究","authors":"K. Janeczek, A. Arazna, Yan Zhang, Shiwei Ma, J. Sitek, Jing-yu Fan, Johan Liu, K. Lipiec","doi":"10.1109/CSTIC.2017.7919866","DOIUrl":null,"url":null,"abstract":"Heat management is one of the major challenges in modern electronic devices. The higher performance results in a production of greater amount of heat which needs to be efficiently dissipated so as to ensure the electronic devices operational during the period of lifetime. This paper discusses the application of micro- and nano-materials in thermal interface materials (TIM) used for heat management. Effects of type, size and geometry of different fillers were experimentally investigated. The results showed that it is recommended to utilize silver particles compared to copper ones to achieve higher heat dissipation. And the particles of smaller size may enhance the thermal conductivity of elaborated materials.","PeriodicalId":6846,"journal":{"name":"2017 China Semiconductor Technology International Conference (CSTIC)","volume":"204 1","pages":"1-3"},"PeriodicalIF":0.0000,"publicationDate":"2017-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation of thermal interface materials reinforced with micro- and nanoparticles\",\"authors\":\"K. Janeczek, A. Arazna, Yan Zhang, Shiwei Ma, J. Sitek, Jing-yu Fan, Johan Liu, K. Lipiec\",\"doi\":\"10.1109/CSTIC.2017.7919866\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Heat management is one of the major challenges in modern electronic devices. The higher performance results in a production of greater amount of heat which needs to be efficiently dissipated so as to ensure the electronic devices operational during the period of lifetime. This paper discusses the application of micro- and nano-materials in thermal interface materials (TIM) used for heat management. Effects of type, size and geometry of different fillers were experimentally investigated. The results showed that it is recommended to utilize silver particles compared to copper ones to achieve higher heat dissipation. And the particles of smaller size may enhance the thermal conductivity of elaborated materials.\",\"PeriodicalId\":6846,\"journal\":{\"name\":\"2017 China Semiconductor Technology International Conference (CSTIC)\",\"volume\":\"204 1\",\"pages\":\"1-3\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 China Semiconductor Technology International Conference (CSTIC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSTIC.2017.7919866\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 China Semiconductor Technology International Conference (CSTIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSTIC.2017.7919866","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Investigation of thermal interface materials reinforced with micro- and nanoparticles
Heat management is one of the major challenges in modern electronic devices. The higher performance results in a production of greater amount of heat which needs to be efficiently dissipated so as to ensure the electronic devices operational during the period of lifetime. This paper discusses the application of micro- and nano-materials in thermal interface materials (TIM) used for heat management. Effects of type, size and geometry of different fillers were experimentally investigated. The results showed that it is recommended to utilize silver particles compared to copper ones to achieve higher heat dissipation. And the particles of smaller size may enhance the thermal conductivity of elaborated materials.