三维多项式系统的积分、哈密顿公式和三重公式

IF 0.7 Q4 MECHANICS
Ougul Esen, A. Choudhury, P. Guha
{"title":"三维多项式系统的积分、哈密顿公式和三重公式","authors":"Ougul Esen, A. Choudhury, P. Guha","doi":"10.2298/TAM161118001E","DOIUrl":null,"url":null,"abstract":"We apply the Darboux integrability method to determine first integrals and Hamiltonian formulations of three dimensional polynomial systems; namely the reduced three-wave interaction problem, the Rabinovich system, the Hindmarsh-Rose model, and the oregonator model. Additionally, we investigate their Hamiltonian, Nambu-Poisson and metriplectic characters.","PeriodicalId":44059,"journal":{"name":"Theoretical and Applied Mechanics","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2016-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On integrals, Hamiltonian and metriplectic formulations of polynomial systems in 3D\",\"authors\":\"Ougul Esen, A. Choudhury, P. Guha\",\"doi\":\"10.2298/TAM161118001E\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We apply the Darboux integrability method to determine first integrals and Hamiltonian formulations of three dimensional polynomial systems; namely the reduced three-wave interaction problem, the Rabinovich system, the Hindmarsh-Rose model, and the oregonator model. Additionally, we investigate their Hamiltonian, Nambu-Poisson and metriplectic characters.\",\"PeriodicalId\":44059,\"journal\":{\"name\":\"Theoretical and Applied Mechanics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2016-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theoretical and Applied Mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2298/TAM161118001E\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Applied Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2298/TAM161118001E","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 1

摘要

应用达布可积性方法确定三维多项式系统的一阶积分和哈密顿公式;即简化三波相互作用问题、Rabinovich系统、Hindmarsh-Rose模型和oregonator模型。此外,我们还研究了它们的哈密顿特性、南布泊松特性和三重特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On integrals, Hamiltonian and metriplectic formulations of polynomial systems in 3D
We apply the Darboux integrability method to determine first integrals and Hamiltonian formulations of three dimensional polynomial systems; namely the reduced three-wave interaction problem, the Rabinovich system, the Hindmarsh-Rose model, and the oregonator model. Additionally, we investigate their Hamiltonian, Nambu-Poisson and metriplectic characters.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
4
审稿时长
32 weeks
期刊介绍: Theoretical and Applied Mechanics (TAM) invites submission of original scholarly work in all fields of theoretical and applied mechanics. TAM features selected high quality research articles that represent the broad spectrum of interest in mechanics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信