基于poincar紧化的某SIR流行病模型的全局行为

IF 0.4 Q4 MATHEMATICS, APPLIED
Yutaka Ichida
{"title":"基于poincar<s:1>紧化的某SIR流行病模型的全局行为","authors":"Yutaka Ichida","doi":"10.14495/jsiaml.14.65","DOIUrl":null,"url":null,"abstract":"It is important to study the global behavior of solutions to systems of ordinary differential equations describing the transmission dynamics of infectious disease. In this paper, we present a different approach from the Lyapunov function used in most of them. This approach is based on the Poincaré compactification. We then apply the method to a SIR endemic model as a test case, and discuss its effectiveness and the potential applications of this approach. In addition, we refine the discussion of dynamics near the equilibrium, derive the asymptotic behavior, and mention its relation to the basic reproduction number.","PeriodicalId":42099,"journal":{"name":"JSIAM Letters","volume":"82 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2022-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On global behavior of a some SIR epidemic model based on the Poincaré compactification\",\"authors\":\"Yutaka Ichida\",\"doi\":\"10.14495/jsiaml.14.65\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is important to study the global behavior of solutions to systems of ordinary differential equations describing the transmission dynamics of infectious disease. In this paper, we present a different approach from the Lyapunov function used in most of them. This approach is based on the Poincaré compactification. We then apply the method to a SIR endemic model as a test case, and discuss its effectiveness and the potential applications of this approach. In addition, we refine the discussion of dynamics near the equilibrium, derive the asymptotic behavior, and mention its relation to the basic reproduction number.\",\"PeriodicalId\":42099,\"journal\":{\"name\":\"JSIAM Letters\",\"volume\":\"82 1\",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2022-01-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JSIAM Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14495/jsiaml.14.65\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JSIAM Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14495/jsiaml.14.65","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 1

摘要

研究描述传染病传播动力学的常微分方程组解的全局行为是很重要的。在本文中,我们提出了一种不同于它们中大多数使用的李雅普诺夫函数的方法。这种方法是基于庞卡罗紧化的。然后,我们将该方法应用于SIR地方性模型作为测试用例,并讨论其有效性和该方法的潜在应用。此外,我们改进了平衡点附近动力学的讨论,导出了其渐近行为,并提到了它与基本再现数的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On global behavior of a some SIR epidemic model based on the Poincaré compactification
It is important to study the global behavior of solutions to systems of ordinary differential equations describing the transmission dynamics of infectious disease. In this paper, we present a different approach from the Lyapunov function used in most of them. This approach is based on the Poincaré compactification. We then apply the method to a SIR endemic model as a test case, and discuss its effectiveness and the potential applications of this approach. In addition, we refine the discussion of dynamics near the equilibrium, derive the asymptotic behavior, and mention its relation to the basic reproduction number.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
JSIAM Letters
JSIAM Letters MATHEMATICS, APPLIED-
自引率
25.00%
发文量
27
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信