多重函数的完全单调性

Pub Date : 2020-12-03 DOI:10.5802/crmath.115
Sourav Das
{"title":"多重函数的完全单调性","authors":"Sourav Das","doi":"10.5802/crmath.115","DOIUrl":null,"url":null,"abstract":"We consider the following functions fn (x) = 1− ln x + lnGn (x +1) x and gn (x) = x Gn (x +1) x , x ∈ (0,∞), n ∈N, where Gn (z) = (Γn (z))(−1) and Γn is the multiple gamma function of order n. In this work, our aim is to establish that f (2n) 2n (x) and (ln g2n (x)) (2n) are strictly completely monotonic on the positive half line for any positive integer n. In particular, we show that f2(x) and g2(x) are strictly completely monotonic and strictly logarithmically completely monotonic respectively on (0,3]. As application, we obtain new bounds for the Barnes G-function. 2020 Mathematics Subject Classification. 33B15, 26D07. Manuscript received 2nd August 2020, revised and accepted 8th September 2020.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A complete monotonicity property of the multiple gamma function\",\"authors\":\"Sourav Das\",\"doi\":\"10.5802/crmath.115\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the following functions fn (x) = 1− ln x + lnGn (x +1) x and gn (x) = x Gn (x +1) x , x ∈ (0,∞), n ∈N, where Gn (z) = (Γn (z))(−1) and Γn is the multiple gamma function of order n. In this work, our aim is to establish that f (2n) 2n (x) and (ln g2n (x)) (2n) are strictly completely monotonic on the positive half line for any positive integer n. In particular, we show that f2(x) and g2(x) are strictly completely monotonic and strictly logarithmically completely monotonic respectively on (0,3]. As application, we obtain new bounds for the Barnes G-function. 2020 Mathematics Subject Classification. 33B15, 26D07. Manuscript received 2nd August 2020, revised and accepted 8th September 2020.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2020-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.5802/crmath.115\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5802/crmath.115","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑以下函数fn (x) = 1−ln x + lnGn (x + 1) x和gn (x) = x gn (x + 1) x, x∈(0,∞),n∈n,在gn (z) =(Γn (z))(−1)和Γn n的多个伽马函数。在这个工作中,我们的目标是建立f (2 n) 2 n (x)和(ln g2n (x)) (2 n)是严格完全单调正半直线上任何正整数n。特别是,我们证明了f2(x)和g2(x)分别在(0,3)上是严格完全单调和严格对数完全单调的。作为应用,我们得到了Barnes g函数的新的界。2020数学学科分类。33B15, 26D07。2020年8月2日收稿,2020年9月8日改稿。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
A complete monotonicity property of the multiple gamma function
We consider the following functions fn (x) = 1− ln x + lnGn (x +1) x and gn (x) = x Gn (x +1) x , x ∈ (0,∞), n ∈N, where Gn (z) = (Γn (z))(−1) and Γn is the multiple gamma function of order n. In this work, our aim is to establish that f (2n) 2n (x) and (ln g2n (x)) (2n) are strictly completely monotonic on the positive half line for any positive integer n. In particular, we show that f2(x) and g2(x) are strictly completely monotonic and strictly logarithmically completely monotonic respectively on (0,3]. As application, we obtain new bounds for the Barnes G-function. 2020 Mathematics Subject Classification. 33B15, 26D07. Manuscript received 2nd August 2020, revised and accepted 8th September 2020.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信