生物医学数据词典的机器阅读

N. Ashish, Arihant Patawari
{"title":"生物医学数据词典的机器阅读","authors":"N. Ashish, Arihant Patawari","doi":"10.1145/3177874","DOIUrl":null,"url":null,"abstract":"This article describes an approach for the automated reading of biomedical data dictionaries. Automated reading is the process of extracting element details for each of the data elements from a data dictionary in a document format (such as PDF) to a completely structured representation. A structured representation is essential if the data dictionary metadata are to be used in applications such as data integration and also in evaluating the quality of the associated data. We present an approach and implemented solution for the problem, considering different formats of data dictionaries. We have a particular focus on the most challenging format with a machine-learning classification solution to the problem using conditional random field classifiers. We present an evaluation using several actual data dictionaries, demonstrating the effectiveness of our approach.","PeriodicalId":15582,"journal":{"name":"Journal of Data and Information Quality (JDIQ)","volume":"180 1","pages":"1 - 20"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Machine Reading of Biomedical Data Dictionaries\",\"authors\":\"N. Ashish, Arihant Patawari\",\"doi\":\"10.1145/3177874\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article describes an approach for the automated reading of biomedical data dictionaries. Automated reading is the process of extracting element details for each of the data elements from a data dictionary in a document format (such as PDF) to a completely structured representation. A structured representation is essential if the data dictionary metadata are to be used in applications such as data integration and also in evaluating the quality of the associated data. We present an approach and implemented solution for the problem, considering different formats of data dictionaries. We have a particular focus on the most challenging format with a machine-learning classification solution to the problem using conditional random field classifiers. We present an evaluation using several actual data dictionaries, demonstrating the effectiveness of our approach.\",\"PeriodicalId\":15582,\"journal\":{\"name\":\"Journal of Data and Information Quality (JDIQ)\",\"volume\":\"180 1\",\"pages\":\"1 - 20\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Data and Information Quality (JDIQ)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3177874\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Data and Information Quality (JDIQ)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3177874","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文描述了一种自动读取生物医学数据字典的方法。自动读取是从文档格式(如PDF)的数据字典中提取每个数据元素的元素详细信息,以完全结构化表示的过程。如果要在数据集成等应用程序中使用数据字典元数据,以及在评估相关数据的质量时使用数据字典元数据,那么结构化表示是必不可少的。考虑到不同格式的数据字典,我们提出了一种方法并实现了解决方案。我们特别关注最具挑战性的格式,使用机器学习分类解决方案来解决使用条件随机场分类器的问题。我们使用几个实际的数据字典进行了评估,证明了我们方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Machine Reading of Biomedical Data Dictionaries
This article describes an approach for the automated reading of biomedical data dictionaries. Automated reading is the process of extracting element details for each of the data elements from a data dictionary in a document format (such as PDF) to a completely structured representation. A structured representation is essential if the data dictionary metadata are to be used in applications such as data integration and also in evaluating the quality of the associated data. We present an approach and implemented solution for the problem, considering different formats of data dictionaries. We have a particular focus on the most challenging format with a machine-learning classification solution to the problem using conditional random field classifiers. We present an evaluation using several actual data dictionaries, demonstrating the effectiveness of our approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信