骨调节microrna和阻力运动:综述

Q4 Medicine
D. Bemben, Zhaojing Chen, S. Buchanan
{"title":"骨调节microrna和阻力运动:综述","authors":"D. Bemben, Zhaojing Chen, S. Buchanan","doi":"10.3390/osteology2010002","DOIUrl":null,"url":null,"abstract":"MicroRNAs (miRNA) are a class of short noncoding RNA that play important roles in controlling gene expression. Many miRNAs have been identified as being important regulators of bone cell function, thus affecting the bone remodeling processes. In addition to being expressed in specific tissues and exerting intracellular effects, miRNAs can enter the blood where they can be taken up by other tissues. These circulating miRNAs (c-miRNA) also have clinical significance as biomarkers of musculoskeletal diseases as they are tissue-specific, are stable and easily detectable, and require minimally invasive procedures. This mini-review discusses miRNAs with regulatory roles in bone metabolism and c-miRNA responses to acute bouts of resistance exercise. MiRNA responses (e.g., upregulation/downregulation of expression) vary depending on the resistance exercise protocol characteristics and the age of the participants. There are gaps in the literature that need to be addressed as most of the resistance exercise studies focused on miRNAs that regulate skeletal muscle in male participants.","PeriodicalId":36674,"journal":{"name":"Clinical Osteology","volume":"43 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Bone-Regulating MicroRNAs and Resistance Exercise: A Mini-Review\",\"authors\":\"D. Bemben, Zhaojing Chen, S. Buchanan\",\"doi\":\"10.3390/osteology2010002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"MicroRNAs (miRNA) are a class of short noncoding RNA that play important roles in controlling gene expression. Many miRNAs have been identified as being important regulators of bone cell function, thus affecting the bone remodeling processes. In addition to being expressed in specific tissues and exerting intracellular effects, miRNAs can enter the blood where they can be taken up by other tissues. These circulating miRNAs (c-miRNA) also have clinical significance as biomarkers of musculoskeletal diseases as they are tissue-specific, are stable and easily detectable, and require minimally invasive procedures. This mini-review discusses miRNAs with regulatory roles in bone metabolism and c-miRNA responses to acute bouts of resistance exercise. MiRNA responses (e.g., upregulation/downregulation of expression) vary depending on the resistance exercise protocol characteristics and the age of the participants. There are gaps in the literature that need to be addressed as most of the resistance exercise studies focused on miRNAs that regulate skeletal muscle in male participants.\",\"PeriodicalId\":36674,\"journal\":{\"name\":\"Clinical Osteology\",\"volume\":\"43 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinical Osteology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/osteology2010002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical Osteology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/osteology2010002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 1

摘要

MicroRNAs (miRNA)是一类短链非编码RNA,在基因表达调控中起重要作用。许多mirna已被确定为骨细胞功能的重要调节因子,从而影响骨重塑过程。mirna除了在特定组织中表达并发挥细胞内作用外,还可以进入血液,被其他组织吸收。这些循环mirna (c-miRNA)作为肌肉骨骼疾病的生物标志物也具有临床意义,因为它们具有组织特异性,稳定且易于检测,并且需要微创手术。这篇综述讨论了mirna在骨代谢和c-miRNA对急性抵抗运动反应中的调节作用。MiRNA反应(如表达上调/下调)因阻力运动方案特点和参与者的年龄而异。由于大多数阻力运动研究都集中在调节男性骨骼肌的mirna上,因此需要解决文献中的空白。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bone-Regulating MicroRNAs and Resistance Exercise: A Mini-Review
MicroRNAs (miRNA) are a class of short noncoding RNA that play important roles in controlling gene expression. Many miRNAs have been identified as being important regulators of bone cell function, thus affecting the bone remodeling processes. In addition to being expressed in specific tissues and exerting intracellular effects, miRNAs can enter the blood where they can be taken up by other tissues. These circulating miRNAs (c-miRNA) also have clinical significance as biomarkers of musculoskeletal diseases as they are tissue-specific, are stable and easily detectable, and require minimally invasive procedures. This mini-review discusses miRNAs with regulatory roles in bone metabolism and c-miRNA responses to acute bouts of resistance exercise. MiRNA responses (e.g., upregulation/downregulation of expression) vary depending on the resistance exercise protocol characteristics and the age of the participants. There are gaps in the literature that need to be addressed as most of the resistance exercise studies focused on miRNAs that regulate skeletal muscle in male participants.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Clinical Osteology
Clinical Osteology Medicine-Endocrinology, Diabetes and Metabolism
CiteScore
0.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信