悬浮颗粒物输运模式中卫星资料的同化

M. Dobrynin, H. Gunther, G. Gayer
{"title":"悬浮颗粒物输运模式中卫星资料的同化","authors":"M. Dobrynin, H. Gunther, G. Gayer","doi":"10.1109/BALTIC.2008.4625513","DOIUrl":null,"url":null,"abstract":"The GKSS-BSH three-dimensional suspended particulate matter (SPM) transport module was combined with the hydrodynamic circulation model HAMSOM to simulate 2 years of SPM distributions in the North Sea with fine spatial resolution (3 km horizontally and 21 vertical layers). In addition, the model was forced by wave fields computed with a WAM model set-up on the same grid. The SPM model calculates distributions of three SPM fractions with different settling velocities in the water column and the corresponding fine sediment fractions in the upper 20 cm of the bottom. The local shear stress velocities, derived from currents and waves control the processes of sedimentation, re-suspension and erosion. Waves, currents and the different sinking velocities of the three sediment fractions govern the vertical exchange. In a first step, the results were compared to ENVISAT MERIS satellite data and to in-situ measurements, and a quality control system for the satellite data was developed. In a second step, the satellite data were assimilated into the model using a sequential optimum interpolation scheme. Our focus is to develop a tool for SPM calculations based on modelling and data assimilation, which can be used for operational purpose. Results of the SPM simulations with and without assimilation will be presented and compared with independent observations.","PeriodicalId":6307,"journal":{"name":"2008 IEEE/OES US/EU-Baltic International Symposium","volume":"27 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2008-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Assimilation of satellite data in a Suspended Particulate Matter transport model\",\"authors\":\"M. Dobrynin, H. Gunther, G. Gayer\",\"doi\":\"10.1109/BALTIC.2008.4625513\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The GKSS-BSH three-dimensional suspended particulate matter (SPM) transport module was combined with the hydrodynamic circulation model HAMSOM to simulate 2 years of SPM distributions in the North Sea with fine spatial resolution (3 km horizontally and 21 vertical layers). In addition, the model was forced by wave fields computed with a WAM model set-up on the same grid. The SPM model calculates distributions of three SPM fractions with different settling velocities in the water column and the corresponding fine sediment fractions in the upper 20 cm of the bottom. The local shear stress velocities, derived from currents and waves control the processes of sedimentation, re-suspension and erosion. Waves, currents and the different sinking velocities of the three sediment fractions govern the vertical exchange. In a first step, the results were compared to ENVISAT MERIS satellite data and to in-situ measurements, and a quality control system for the satellite data was developed. In a second step, the satellite data were assimilated into the model using a sequential optimum interpolation scheme. Our focus is to develop a tool for SPM calculations based on modelling and data assimilation, which can be used for operational purpose. Results of the SPM simulations with and without assimilation will be presented and compared with independent observations.\",\"PeriodicalId\":6307,\"journal\":{\"name\":\"2008 IEEE/OES US/EU-Baltic International Symposium\",\"volume\":\"27 1\",\"pages\":\"1-4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 IEEE/OES US/EU-Baltic International Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BALTIC.2008.4625513\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE/OES US/EU-Baltic International Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BALTIC.2008.4625513","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

结合GKSS-BSH三维悬浮颗粒物(SPM)输送模块和水动力环流模式HAMSOM,以精细的空间分辨率(水平3 km,垂直21层)模拟了北海2年的SPM分布。此外,该模型还受到在同一网格上建立的WAM模型所计算的波场的影响。SPM模型计算了三种不同沉降速度的SPM组分在水柱中的分布,以及相应的底部上20 cm细粒沉积物组分的分布。由水流和波浪产生的局部剪应力速度控制着沉积、再悬浮和侵蚀过程。波浪、水流和三种沉积物组分的不同下沉速度控制着垂直交换。首先,将结果与ENVISAT MERIS卫星数据和现场测量数据进行比较,并开发了卫星数据的质量控制系统。第二步,利用序列优化插值方案将卫星数据同化到模型中。我们的重点是开发一种基于建模和数据同化的SPM计算工具,该工具可用于操作目的。将介绍有同化和没有同化的SPM模拟结果,并与独立观测结果进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Assimilation of satellite data in a Suspended Particulate Matter transport model
The GKSS-BSH three-dimensional suspended particulate matter (SPM) transport module was combined with the hydrodynamic circulation model HAMSOM to simulate 2 years of SPM distributions in the North Sea with fine spatial resolution (3 km horizontally and 21 vertical layers). In addition, the model was forced by wave fields computed with a WAM model set-up on the same grid. The SPM model calculates distributions of three SPM fractions with different settling velocities in the water column and the corresponding fine sediment fractions in the upper 20 cm of the bottom. The local shear stress velocities, derived from currents and waves control the processes of sedimentation, re-suspension and erosion. Waves, currents and the different sinking velocities of the three sediment fractions govern the vertical exchange. In a first step, the results were compared to ENVISAT MERIS satellite data and to in-situ measurements, and a quality control system for the satellite data was developed. In a second step, the satellite data were assimilated into the model using a sequential optimum interpolation scheme. Our focus is to develop a tool for SPM calculations based on modelling and data assimilation, which can be used for operational purpose. Results of the SPM simulations with and without assimilation will be presented and compared with independent observations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信