广义奇幂柯西族及其异方差回归模型

E. Ea, M. Alizadeh, T. Ramires, E. Ortega
{"title":"广义奇幂柯西族及其异方差回归模型","authors":"E. Ea, M. Alizadeh, T. Ramires, E. Ortega","doi":"10.19139/SOIC-2310-5070-765","DOIUrl":null,"url":null,"abstract":"This study introduces a generalization of the odd power Cauchy family by adding one more shape parameter togain more flexibility modeling the complex data structures. The linear representations for the density, moments, quantile,and generating functions are derived. The model parameters are estimated employing the maximum likelihood estimationmethod. The Monte Carlo simulations are performed under different parameter settings and sample sizes for the proposedmodels. In addition, we introduce a new heteroscedastic regression model based on the special member of the proposedfamily. Three data sets are analyzed with competitive and proposed models.","PeriodicalId":93376,"journal":{"name":"Statistics, optimization & information computing","volume":"5 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Generalized Odd Power Cauchy Family and Its Associated Heteroscedastic Regression Model\",\"authors\":\"E. Ea, M. Alizadeh, T. Ramires, E. Ortega\",\"doi\":\"10.19139/SOIC-2310-5070-765\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study introduces a generalization of the odd power Cauchy family by adding one more shape parameter togain more flexibility modeling the complex data structures. The linear representations for the density, moments, quantile,and generating functions are derived. The model parameters are estimated employing the maximum likelihood estimationmethod. The Monte Carlo simulations are performed under different parameter settings and sample sizes for the proposedmodels. In addition, we introduce a new heteroscedastic regression model based on the special member of the proposedfamily. Three data sets are analyzed with competitive and proposed models.\",\"PeriodicalId\":93376,\"journal\":{\"name\":\"Statistics, optimization & information computing\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistics, optimization & information computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.19139/SOIC-2310-5070-765\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics, optimization & information computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.19139/SOIC-2310-5070-765","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

通过增加一个形状参数,对奇幂柯西族进行了推广,使复杂数据结构的建模更加灵活。导出了密度、矩、分位数和生成函数的线性表示。采用极大似然估计方法对模型参数进行估计。对所提出的模型在不同的参数设置和样本量下进行了蒙特卡罗模拟。此外,我们还引入了一种新的基于该家族特殊成员的异方差回归模型。用竞争性模型和建议模型分析了三个数据集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generalized Odd Power Cauchy Family and Its Associated Heteroscedastic Regression Model
This study introduces a generalization of the odd power Cauchy family by adding one more shape parameter togain more flexibility modeling the complex data structures. The linear representations for the density, moments, quantile,and generating functions are derived. The model parameters are estimated employing the maximum likelihood estimationmethod. The Monte Carlo simulations are performed under different parameter settings and sample sizes for the proposedmodels. In addition, we introduce a new heteroscedastic regression model based on the special member of the proposedfamily. Three data sets are analyzed with competitive and proposed models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信