R. S. Hubbard, Leon Geoffrey Staaden, Derek John Scales, Andrew Tran
{"title":"云中大参数流保障分析的自动化","authors":"R. S. Hubbard, Leon Geoffrey Staaden, Derek John Scales, Andrew Tran","doi":"10.4043/30937-ms","DOIUrl":null,"url":null,"abstract":"\n The objective of this study was to determine the highest flowrate through a client's existing flowline without top-of-line condensation rates exceeding a critical value of 0.25 g/m2.s. Automation of the workflow allowed a large combination of operating conditions to be analysed within a shorter timeframe than a traditional flow assurance analysis process.\n A multiparameter case matrix was developed to analyse the full range of process and environmental variables. A proprietary multiphase flow assurance software in the cloud was used to develop a reference case model. Then a software script was developed to read in the reference case model's code and produce input files for 1,080 cases. All cases were run within 30 minutes in the cloud. Another software script then extracted key data from the 1,080 output files into a single Excel spreadsheet to enable data visualisation and identification of a simple and effective flow rate criterion to limit condensation rates.\n Automation of the workflow allowed all combinations of variables to be analysed within a shorter timeframe compared to the traditional flow assurance analysis process, which usually analyses a somewhat limited number of suspected worst-case scenarios selected based on engineering judgement.\n The bulk data resulting from the automated workflow enabled a single integrity limit criterion to be applied with a high level of confidence, namely the fluid temperature measured at a subsea corrosion probe. This simplified integrity limit allows the operators to easily maximise production for any combination of process and environmental conditions, whilst maintaining confidence that they are not exceeding the critical condensation rate.","PeriodicalId":10936,"journal":{"name":"Day 2 Tue, August 17, 2021","volume":"69 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Automation of Large Parametric Flow Assurance Analyses in the Cloud\",\"authors\":\"R. S. Hubbard, Leon Geoffrey Staaden, Derek John Scales, Andrew Tran\",\"doi\":\"10.4043/30937-ms\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The objective of this study was to determine the highest flowrate through a client's existing flowline without top-of-line condensation rates exceeding a critical value of 0.25 g/m2.s. Automation of the workflow allowed a large combination of operating conditions to be analysed within a shorter timeframe than a traditional flow assurance analysis process.\\n A multiparameter case matrix was developed to analyse the full range of process and environmental variables. A proprietary multiphase flow assurance software in the cloud was used to develop a reference case model. Then a software script was developed to read in the reference case model's code and produce input files for 1,080 cases. All cases were run within 30 minutes in the cloud. Another software script then extracted key data from the 1,080 output files into a single Excel spreadsheet to enable data visualisation and identification of a simple and effective flow rate criterion to limit condensation rates.\\n Automation of the workflow allowed all combinations of variables to be analysed within a shorter timeframe compared to the traditional flow assurance analysis process, which usually analyses a somewhat limited number of suspected worst-case scenarios selected based on engineering judgement.\\n The bulk data resulting from the automated workflow enabled a single integrity limit criterion to be applied with a high level of confidence, namely the fluid temperature measured at a subsea corrosion probe. This simplified integrity limit allows the operators to easily maximise production for any combination of process and environmental conditions, whilst maintaining confidence that they are not exceeding the critical condensation rate.\",\"PeriodicalId\":10936,\"journal\":{\"name\":\"Day 2 Tue, August 17, 2021\",\"volume\":\"69 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 2 Tue, August 17, 2021\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4043/30937-ms\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 2 Tue, August 17, 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4043/30937-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Automation of Large Parametric Flow Assurance Analyses in the Cloud
The objective of this study was to determine the highest flowrate through a client's existing flowline without top-of-line condensation rates exceeding a critical value of 0.25 g/m2.s. Automation of the workflow allowed a large combination of operating conditions to be analysed within a shorter timeframe than a traditional flow assurance analysis process.
A multiparameter case matrix was developed to analyse the full range of process and environmental variables. A proprietary multiphase flow assurance software in the cloud was used to develop a reference case model. Then a software script was developed to read in the reference case model's code and produce input files for 1,080 cases. All cases were run within 30 minutes in the cloud. Another software script then extracted key data from the 1,080 output files into a single Excel spreadsheet to enable data visualisation and identification of a simple and effective flow rate criterion to limit condensation rates.
Automation of the workflow allowed all combinations of variables to be analysed within a shorter timeframe compared to the traditional flow assurance analysis process, which usually analyses a somewhat limited number of suspected worst-case scenarios selected based on engineering judgement.
The bulk data resulting from the automated workflow enabled a single integrity limit criterion to be applied with a high level of confidence, namely the fluid temperature measured at a subsea corrosion probe. This simplified integrity limit allows the operators to easily maximise production for any combination of process and environmental conditions, whilst maintaining confidence that they are not exceeding the critical condensation rate.