甘蔗块表面接枝碳纳米管的环保合成及其缓释给药平台的开发

IF 1.2 Q4 NANOSCIENCE & NANOTECHNOLOGY
R. Narkhede, Mahesh P. More, Swapnil Patil, P. Patil, A. G. Patil, Prashant K. Deshmukh
{"title":"甘蔗块表面接枝碳纳米管的环保合成及其缓释给药平台的开发","authors":"R. Narkhede, Mahesh P. More, Swapnil Patil, P. Patil, A. G. Patil, Prashant K. Deshmukh","doi":"10.22034/IJND.2021.681077","DOIUrl":null,"url":null,"abstract":"Surface grafting of nanocarriers could modulate their properties and characteristics. As carbon nanotubes synthesis is a very tricky process and requires high-end methods, hence the present investigation was aimed to develop an eco-friendly method for synthesis carbon nanotubes (CNTs) and subsequent surface grafting for enhanced drug delivery application. The present study elaborates two-step chemical modifications; wherein the first step is catalytic cleavage of natural precursor in the presence of ferrocene and the second step involve chemical grafting of Acyclovir (ACV) as a model drug to understand the drug release behaviour. The catalytic cleavage of sugarcane cubes (natural precursor) was carried out in a closed copper tube, which prevents oxidation and results in a conversion of tubular nanostructures to amorphous carbon. The covalent attachment of ACV on purified CNTs (fCNTs) was done using carbodiimide chemistry. The preliminary Uv-Vis absorbance spectra defined at 260 nm was arised due to π-π* stacking of aromatic C-C bonds. The Fourier Transforms Infrared Spectroscopy (FTIR) indicated the hydroxyl stretch at 3300 cm-1 while amide I bond formation was observed at 1672 cm-1. The XRD spectra confirmed successful synthesis of CNTs. The calculated average crystallite size (Scherer equation) of synthesized CNTs was found to be 42.84 and 44.45 nm; it was also in accordance with the morphological observation as confirmed simultaneously using SEM analysis. The covalently attached ACV was released up to 80% during 8h of in vitro drug release study. The surface grafting potential of CNTs was found to be promising compared to other nanomaterials.","PeriodicalId":14081,"journal":{"name":"international journal of nano dimension","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Eco-friendly synthesis of surface grafted Carbon nanotubes from sugarcane cubes for development of prolonged release drug delivery platform\",\"authors\":\"R. Narkhede, Mahesh P. More, Swapnil Patil, P. Patil, A. G. Patil, Prashant K. Deshmukh\",\"doi\":\"10.22034/IJND.2021.681077\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Surface grafting of nanocarriers could modulate their properties and characteristics. As carbon nanotubes synthesis is a very tricky process and requires high-end methods, hence the present investigation was aimed to develop an eco-friendly method for synthesis carbon nanotubes (CNTs) and subsequent surface grafting for enhanced drug delivery application. The present study elaborates two-step chemical modifications; wherein the first step is catalytic cleavage of natural precursor in the presence of ferrocene and the second step involve chemical grafting of Acyclovir (ACV) as a model drug to understand the drug release behaviour. The catalytic cleavage of sugarcane cubes (natural precursor) was carried out in a closed copper tube, which prevents oxidation and results in a conversion of tubular nanostructures to amorphous carbon. The covalent attachment of ACV on purified CNTs (fCNTs) was done using carbodiimide chemistry. The preliminary Uv-Vis absorbance spectra defined at 260 nm was arised due to π-π* stacking of aromatic C-C bonds. The Fourier Transforms Infrared Spectroscopy (FTIR) indicated the hydroxyl stretch at 3300 cm-1 while amide I bond formation was observed at 1672 cm-1. The XRD spectra confirmed successful synthesis of CNTs. The calculated average crystallite size (Scherer equation) of synthesized CNTs was found to be 42.84 and 44.45 nm; it was also in accordance with the morphological observation as confirmed simultaneously using SEM analysis. The covalently attached ACV was released up to 80% during 8h of in vitro drug release study. The surface grafting potential of CNTs was found to be promising compared to other nanomaterials.\",\"PeriodicalId\":14081,\"journal\":{\"name\":\"international journal of nano dimension\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2021-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"international journal of nano dimension\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22034/IJND.2021.681077\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"NANOSCIENCE & NANOTECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"international journal of nano dimension","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22034/IJND.2021.681077","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

纳米载体的表面接枝可以改变其性质和特性。由于碳纳米管的合成是一个非常棘手的过程,并且需要高端的方法,因此本研究旨在开发一种环保的碳纳米管(CNTs)合成和随后的表面接枝方法,以增强药物传递应用。本研究阐述了两步化学修饰;其中第一步是在二茂铁存在下催化裂解天然前体,第二步是将阿昔洛韦(ACV)作为模型药物进行化学接枝,以了解药物释放行为。甘蔗立方体(天然前驱体)的催化裂解在封闭的铜管中进行,防止氧化并导致管状纳米结构转化为无定形碳。ACV在纯化碳纳米管(fCNTs)上的共价附着采用碳二亚胺化学方法。由于芳香族C-C键的π-π*堆叠,在260 nm处产生了初步的紫外-可见吸收光谱。傅里叶变换红外光谱(FTIR)表明羟基在3300 cm-1处拉伸,酰胺I键在1672 cm-1处形成。XRD谱图证实了CNTs的成功合成。合成CNTs的平均晶粒尺寸(Scherer方程)分别为42.84 nm和44.45 nm;同时用扫描电镜(SEM)分析证实,这与形态学观察一致。体外释药试验8h,共价附着的ACV释药率高达80%。与其他纳米材料相比,CNTs的表面接枝潜力更大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Eco-friendly synthesis of surface grafted Carbon nanotubes from sugarcane cubes for development of prolonged release drug delivery platform
Surface grafting of nanocarriers could modulate their properties and characteristics. As carbon nanotubes synthesis is a very tricky process and requires high-end methods, hence the present investigation was aimed to develop an eco-friendly method for synthesis carbon nanotubes (CNTs) and subsequent surface grafting for enhanced drug delivery application. The present study elaborates two-step chemical modifications; wherein the first step is catalytic cleavage of natural precursor in the presence of ferrocene and the second step involve chemical grafting of Acyclovir (ACV) as a model drug to understand the drug release behaviour. The catalytic cleavage of sugarcane cubes (natural precursor) was carried out in a closed copper tube, which prevents oxidation and results in a conversion of tubular nanostructures to amorphous carbon. The covalent attachment of ACV on purified CNTs (fCNTs) was done using carbodiimide chemistry. The preliminary Uv-Vis absorbance spectra defined at 260 nm was arised due to π-π* stacking of aromatic C-C bonds. The Fourier Transforms Infrared Spectroscopy (FTIR) indicated the hydroxyl stretch at 3300 cm-1 while amide I bond formation was observed at 1672 cm-1. The XRD spectra confirmed successful synthesis of CNTs. The calculated average crystallite size (Scherer equation) of synthesized CNTs was found to be 42.84 and 44.45 nm; it was also in accordance with the morphological observation as confirmed simultaneously using SEM analysis. The covalently attached ACV was released up to 80% during 8h of in vitro drug release study. The surface grafting potential of CNTs was found to be promising compared to other nanomaterials.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
international journal of nano dimension
international journal of nano dimension NANOSCIENCE & NANOTECHNOLOGY-
CiteScore
2.80
自引率
20.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信