{"title":"几种二元不相似矩阵基于模型聚类的贝叶斯方法:R中的dmbc包","authors":"S. Venturini, R. Piccarreta","doi":"10.18637/jss.v100.i16","DOIUrl":null,"url":null,"abstract":"We introduce the new package dmbc that implements a Bayesian algorithm for clustering a set of binary dissimilarity matrices within a model-based framework. Specifically, we consider the case when S matrices are available, each describing the dissimilarities among the same n objects, possibly expressed by S subjects (judges), or measured under different experimental conditions, or with reference to different characteristics of the objects themselves. In particular, we focus on binary dissimilarities, taking values 0 or 1 depending on whether or not two objects are deemed as dissimilar. We are interested in analyzing such data using multidimensional scaling (MDS). Differently from standard MDS algorithms, our goal is to cluster the dissimilarity matrices and, simultaneously, to extract an MDS configuration specific for each cluster. To this end, we develop a fully Bayesian three-way MDS approach, where the elements of each dissimilarity matrix are modeled as a mixture of Bernoulli random vectors. The parameter estimates and the MDS configurations are derived using a hybrid Metropolis-Gibbs Markov Chain Monte Carlo algorithm. We also propose a BIC-like criterion for jointly selecting the optimal number of clusters and latent space dimensions. We illustrate our approach referring both to synthetic data and to a publicly available data set taken from the literature. For the sake of efficiency, the core computations in the package are implemented in C/C++. The package also allows the simulation of multiple chains through the support of the parallel package.","PeriodicalId":17237,"journal":{"name":"Journal of Statistical Software","volume":"32 1","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Bayesian Approach for Model-Based Clustering of Several Binary Dissimilarity Matrices: The dmbc Package in R\",\"authors\":\"S. Venturini, R. Piccarreta\",\"doi\":\"10.18637/jss.v100.i16\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce the new package dmbc that implements a Bayesian algorithm for clustering a set of binary dissimilarity matrices within a model-based framework. Specifically, we consider the case when S matrices are available, each describing the dissimilarities among the same n objects, possibly expressed by S subjects (judges), or measured under different experimental conditions, or with reference to different characteristics of the objects themselves. In particular, we focus on binary dissimilarities, taking values 0 or 1 depending on whether or not two objects are deemed as dissimilar. We are interested in analyzing such data using multidimensional scaling (MDS). Differently from standard MDS algorithms, our goal is to cluster the dissimilarity matrices and, simultaneously, to extract an MDS configuration specific for each cluster. To this end, we develop a fully Bayesian three-way MDS approach, where the elements of each dissimilarity matrix are modeled as a mixture of Bernoulli random vectors. The parameter estimates and the MDS configurations are derived using a hybrid Metropolis-Gibbs Markov Chain Monte Carlo algorithm. We also propose a BIC-like criterion for jointly selecting the optimal number of clusters and latent space dimensions. We illustrate our approach referring both to synthetic data and to a publicly available data set taken from the literature. For the sake of efficiency, the core computations in the package are implemented in C/C++. The package also allows the simulation of multiple chains through the support of the parallel package.\",\"PeriodicalId\":17237,\"journal\":{\"name\":\"Journal of Statistical Software\",\"volume\":\"32 1\",\"pages\":\"\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Statistical Software\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.18637/jss.v100.i16\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Statistical Software","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.18637/jss.v100.i16","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
A Bayesian Approach for Model-Based Clustering of Several Binary Dissimilarity Matrices: The dmbc Package in R
We introduce the new package dmbc that implements a Bayesian algorithm for clustering a set of binary dissimilarity matrices within a model-based framework. Specifically, we consider the case when S matrices are available, each describing the dissimilarities among the same n objects, possibly expressed by S subjects (judges), or measured under different experimental conditions, or with reference to different characteristics of the objects themselves. In particular, we focus on binary dissimilarities, taking values 0 or 1 depending on whether or not two objects are deemed as dissimilar. We are interested in analyzing such data using multidimensional scaling (MDS). Differently from standard MDS algorithms, our goal is to cluster the dissimilarity matrices and, simultaneously, to extract an MDS configuration specific for each cluster. To this end, we develop a fully Bayesian three-way MDS approach, where the elements of each dissimilarity matrix are modeled as a mixture of Bernoulli random vectors. The parameter estimates and the MDS configurations are derived using a hybrid Metropolis-Gibbs Markov Chain Monte Carlo algorithm. We also propose a BIC-like criterion for jointly selecting the optimal number of clusters and latent space dimensions. We illustrate our approach referring both to synthetic data and to a publicly available data set taken from the literature. For the sake of efficiency, the core computations in the package are implemented in C/C++. The package also allows the simulation of multiple chains through the support of the parallel package.
期刊介绍:
The Journal of Statistical Software (JSS) publishes open-source software and corresponding reproducible articles discussing all aspects of the design, implementation, documentation, application, evaluation, comparison, maintainance and distribution of software dedicated to improvement of state-of-the-art in statistical computing in all areas of empirical research. Open-source code and articles are jointly reviewed and published in this journal and should be accessible to a broad community of practitioners, teachers, and researchers in the field of statistics.