A. Sokolov, O. Davydov, D. Kuzmin, Alexander Westermann, S. Turek
{"title":"区域和流形上对流主导问题的通量校正RBF-FD方法","authors":"A. Sokolov, O. Davydov, D. Kuzmin, Alexander Westermann, S. Turek","doi":"10.1515/jnma-2018-0097","DOIUrl":null,"url":null,"abstract":"Abstract In this work, we present a Flux-Corrected Transport (FCT) algorithm for enforcing discrete maximum principles in Radial Basis Function (RBF) generalized Finite Difference (FD) methods for convection-dominated problems. The algorithm is constructed to guarantee mass conservation and to preserve positivity of the solution for irregular data nodes. The method can be applied both for problems defined in a domain or if equipped with level set techniques, on a stationary manifold. We demonstrate the numerical behavior of the method by performing numerical tests for the solid-body rotation benchmark in a unit square and for a transport problem along a curve implicitly prescribed by a level set function. Extension of the proposed method to higher dimensions is straightforward and easily realizable.","PeriodicalId":50109,"journal":{"name":"Journal of Numerical Mathematics","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2019-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"A flux-corrected RBF-FD method for convection dominated problems in domains and on manifolds\",\"authors\":\"A. Sokolov, O. Davydov, D. Kuzmin, Alexander Westermann, S. Turek\",\"doi\":\"10.1515/jnma-2018-0097\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this work, we present a Flux-Corrected Transport (FCT) algorithm for enforcing discrete maximum principles in Radial Basis Function (RBF) generalized Finite Difference (FD) methods for convection-dominated problems. The algorithm is constructed to guarantee mass conservation and to preserve positivity of the solution for irregular data nodes. The method can be applied both for problems defined in a domain or if equipped with level set techniques, on a stationary manifold. We demonstrate the numerical behavior of the method by performing numerical tests for the solid-body rotation benchmark in a unit square and for a transport problem along a curve implicitly prescribed by a level set function. Extension of the proposed method to higher dimensions is straightforward and easily realizable.\",\"PeriodicalId\":50109,\"journal\":{\"name\":\"Journal of Numerical Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2019-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Numerical Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/jnma-2018-0097\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Numerical Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/jnma-2018-0097","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
A flux-corrected RBF-FD method for convection dominated problems in domains and on manifolds
Abstract In this work, we present a Flux-Corrected Transport (FCT) algorithm for enforcing discrete maximum principles in Radial Basis Function (RBF) generalized Finite Difference (FD) methods for convection-dominated problems. The algorithm is constructed to guarantee mass conservation and to preserve positivity of the solution for irregular data nodes. The method can be applied both for problems defined in a domain or if equipped with level set techniques, on a stationary manifold. We demonstrate the numerical behavior of the method by performing numerical tests for the solid-body rotation benchmark in a unit square and for a transport problem along a curve implicitly prescribed by a level set function. Extension of the proposed method to higher dimensions is straightforward and easily realizable.
期刊介绍:
The Journal of Numerical Mathematics (formerly East-West Journal of Numerical Mathematics) contains high-quality papers featuring contemporary research in all areas of Numerical Mathematics. This includes the development, analysis, and implementation of new and innovative methods in Numerical Linear Algebra, Numerical Analysis, Optimal Control/Optimization, and Scientific Computing. The journal will also publish applications-oriented papers with significant mathematical content in computational fluid dynamics and other areas of computational engineering, finance, and life sciences.