区域和流形上对流主导问题的通量校正RBF-FD方法

IF 3.8 2区 数学 Q1 MATHEMATICS
A. Sokolov, O. Davydov, D. Kuzmin, Alexander Westermann, S. Turek
{"title":"区域和流形上对流主导问题的通量校正RBF-FD方法","authors":"A. Sokolov, O. Davydov, D. Kuzmin, Alexander Westermann, S. Turek","doi":"10.1515/jnma-2018-0097","DOIUrl":null,"url":null,"abstract":"Abstract In this work, we present a Flux-Corrected Transport (FCT) algorithm for enforcing discrete maximum principles in Radial Basis Function (RBF) generalized Finite Difference (FD) methods for convection-dominated problems. The algorithm is constructed to guarantee mass conservation and to preserve positivity of the solution for irregular data nodes. The method can be applied both for problems defined in a domain or if equipped with level set techniques, on a stationary manifold. We demonstrate the numerical behavior of the method by performing numerical tests for the solid-body rotation benchmark in a unit square and for a transport problem along a curve implicitly prescribed by a level set function. Extension of the proposed method to higher dimensions is straightforward and easily realizable.","PeriodicalId":50109,"journal":{"name":"Journal of Numerical Mathematics","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2019-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"A flux-corrected RBF-FD method for convection dominated problems in domains and on manifolds\",\"authors\":\"A. Sokolov, O. Davydov, D. Kuzmin, Alexander Westermann, S. Turek\",\"doi\":\"10.1515/jnma-2018-0097\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this work, we present a Flux-Corrected Transport (FCT) algorithm for enforcing discrete maximum principles in Radial Basis Function (RBF) generalized Finite Difference (FD) methods for convection-dominated problems. The algorithm is constructed to guarantee mass conservation and to preserve positivity of the solution for irregular data nodes. The method can be applied both for problems defined in a domain or if equipped with level set techniques, on a stationary manifold. We demonstrate the numerical behavior of the method by performing numerical tests for the solid-body rotation benchmark in a unit square and for a transport problem along a curve implicitly prescribed by a level set function. Extension of the proposed method to higher dimensions is straightforward and easily realizable.\",\"PeriodicalId\":50109,\"journal\":{\"name\":\"Journal of Numerical Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2019-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Numerical Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/jnma-2018-0097\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Numerical Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/jnma-2018-0097","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 8

摘要

摘要本文提出了一种通量校正输运(FCT)算法,用于求解对流主导问题的径向基函数(RBF)广义有限差分(FD)方法中的离散极大值原则。该算法既保证了质量守恒,又保证了不规则数据节点解的正性。该方法既可以应用于在一个领域中定义的问题,也可以应用于固定流形上的水平集技术。我们通过对单位正方形中的实体旋转基准和沿水平集函数隐式规定的曲线的传输问题进行数值测试来证明该方法的数值行为。将所提出的方法扩展到更高的维度是直接且容易实现的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A flux-corrected RBF-FD method for convection dominated problems in domains and on manifolds
Abstract In this work, we present a Flux-Corrected Transport (FCT) algorithm for enforcing discrete maximum principles in Radial Basis Function (RBF) generalized Finite Difference (FD) methods for convection-dominated problems. The algorithm is constructed to guarantee mass conservation and to preserve positivity of the solution for irregular data nodes. The method can be applied both for problems defined in a domain or if equipped with level set techniques, on a stationary manifold. We demonstrate the numerical behavior of the method by performing numerical tests for the solid-body rotation benchmark in a unit square and for a transport problem along a curve implicitly prescribed by a level set function. Extension of the proposed method to higher dimensions is straightforward and easily realizable.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.90
自引率
3.30%
发文量
17
审稿时长
>12 weeks
期刊介绍: The Journal of Numerical Mathematics (formerly East-West Journal of Numerical Mathematics) contains high-quality papers featuring contemporary research in all areas of Numerical Mathematics. This includes the development, analysis, and implementation of new and innovative methods in Numerical Linear Algebra, Numerical Analysis, Optimal Control/Optimization, and Scientific Computing. The journal will also publish applications-oriented papers with significant mathematical content in computational fluid dynamics and other areas of computational engineering, finance, and life sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信