生物过程强化与模型辅助doe策略的生物制药生产

Q2 Physics and Astronomy
J. Möller, K. Kuchemüller, R. Pörtner
{"title":"生物过程强化与模型辅助doe策略的生物制药生产","authors":"J. Möller, K. Kuchemüller, R. Pörtner","doi":"10.1515/psr-2022-0105","DOIUrl":null,"url":null,"abstract":"Abstract The demand for highly effective biopharmaceuticals and the need to reduce manufacturing costs are increasing the pressure to develop productive and efficient bioprocesses. For this purpose, model-based process design concepts have been developed. Although first approaches were proposed, model-based process designs are still not state-of-the-art for cell culture processes during development or manufacturing. This highlights a need for improved methods and tools for optimal experimental design, optimal and robust process design and process optimization for the purposes of monitoring and control during manufacturing. In this review, an overview of the state of the art of model-based methods, their applications, further challenges, possible solutions and specific case studies for intensification of process development for production of biopharmaceuticals is presented. As a special focus, problems related to data generation (culture systems, process mode, specifically designed experiments) will be addressed.","PeriodicalId":20156,"journal":{"name":"Physical Sciences Reviews","volume":"68 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bioprocess intensification with model-assisted DoE-strategies for the production of biopharmaceuticals\",\"authors\":\"J. Möller, K. Kuchemüller, R. Pörtner\",\"doi\":\"10.1515/psr-2022-0105\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The demand for highly effective biopharmaceuticals and the need to reduce manufacturing costs are increasing the pressure to develop productive and efficient bioprocesses. For this purpose, model-based process design concepts have been developed. Although first approaches were proposed, model-based process designs are still not state-of-the-art for cell culture processes during development or manufacturing. This highlights a need for improved methods and tools for optimal experimental design, optimal and robust process design and process optimization for the purposes of monitoring and control during manufacturing. In this review, an overview of the state of the art of model-based methods, their applications, further challenges, possible solutions and specific case studies for intensification of process development for production of biopharmaceuticals is presented. As a special focus, problems related to data generation (culture systems, process mode, specifically designed experiments) will be addressed.\",\"PeriodicalId\":20156,\"journal\":{\"name\":\"Physical Sciences Reviews\",\"volume\":\"68 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Sciences Reviews\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/psr-2022-0105\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Sciences Reviews","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/psr-2022-0105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

摘要

对高效生物制药的需求和降低制造成本的需要增加了开发高产高效生物工艺的压力。为此,开发了基于模型的流程设计概念。虽然提出了第一种方法,但在开发或制造过程中,基于模型的过程设计仍然不是最先进的细胞培养过程。这突出了需要改进的方法和工具,以优化实验设计,优化和稳健的过程设计和过程优化,以便在制造过程中进行监测和控制。在这篇综述中,概述了基于模型的方法的现状,它们的应用,进一步的挑战,可能的解决方案和具体的案例研究,以加强生物制药生产的过程开发。作为一个特别的焦点,与数据生成相关的问题(培养系统,过程模式,专门设计的实验)将被解决。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bioprocess intensification with model-assisted DoE-strategies for the production of biopharmaceuticals
Abstract The demand for highly effective biopharmaceuticals and the need to reduce manufacturing costs are increasing the pressure to develop productive and efficient bioprocesses. For this purpose, model-based process design concepts have been developed. Although first approaches were proposed, model-based process designs are still not state-of-the-art for cell culture processes during development or manufacturing. This highlights a need for improved methods and tools for optimal experimental design, optimal and robust process design and process optimization for the purposes of monitoring and control during manufacturing. In this review, an overview of the state of the art of model-based methods, their applications, further challenges, possible solutions and specific case studies for intensification of process development for production of biopharmaceuticals is presented. As a special focus, problems related to data generation (culture systems, process mode, specifically designed experiments) will be addressed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physical Sciences Reviews
Physical Sciences Reviews MULTIDISCIPLINARY SCIENCES-
CiteScore
2.40
自引率
0.00%
发文量
173
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信