人工神经网络的基本元素:结构建模,生产,性质

Q4 Engineering
A. Sidorenko, N. Klenov, I. Soloviev, S. Bakurskiy, V. Boian, R. Morari, Yu. B. Savva, A. Lomakin, Ludmila Sidorenko, Svetlana Sidorenko, Irina Sidorenko, O. Severyukhina, Aleksey Fedotov, Anastasia Salamatina, A. Vakhrushev
{"title":"人工神经网络的基本元素:结构建模,生产,性质","authors":"A. Sidorenko, N. Klenov, I. Soloviev, S. Bakurskiy, V. Boian, R. Morari, Yu. B. Savva, A. Lomakin, Ludmila Sidorenko, Svetlana Sidorenko, Irina Sidorenko, O. Severyukhina, Aleksey Fedotov, Anastasia Salamatina, A. Vakhrushev","doi":"10.46300/9106.2023.17.21","DOIUrl":null,"url":null,"abstract":"A radical reduction in power consumption is becoming an important task in the development of supercomputers. Artificial neural networks (ANNs) based on superconducting elements of spintronics seem to be the most promising solution. A superconducting ANN needs to develop two basic elements - a nonlinear (neuron) and a linear connecting element (synapse). The theoretical and experimental results of this complex and interdisciplinary problem are presented in this paper. The results of our theoretical and experimental study of the proximity effect in a stacked superconductor/ferromagnet (S/F) superlattice with Co-ferromagnetic layers of various thicknesses and coercive fields and Nb-superconducting layers of constant thickness equal to the coherence length of niobium and some studies using computer simulation of the formation of such multilayer nanostructures and their magnetic properties are presented in this article.","PeriodicalId":13929,"journal":{"name":"International Journal of Circuits, Systems and Signal Processing","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Base Elements for Artificial Neural Network: Structure Modeling, Production, Properties\",\"authors\":\"A. Sidorenko, N. Klenov, I. Soloviev, S. Bakurskiy, V. Boian, R. Morari, Yu. B. Savva, A. Lomakin, Ludmila Sidorenko, Svetlana Sidorenko, Irina Sidorenko, O. Severyukhina, Aleksey Fedotov, Anastasia Salamatina, A. Vakhrushev\",\"doi\":\"10.46300/9106.2023.17.21\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A radical reduction in power consumption is becoming an important task in the development of supercomputers. Artificial neural networks (ANNs) based on superconducting elements of spintronics seem to be the most promising solution. A superconducting ANN needs to develop two basic elements - a nonlinear (neuron) and a linear connecting element (synapse). The theoretical and experimental results of this complex and interdisciplinary problem are presented in this paper. The results of our theoretical and experimental study of the proximity effect in a stacked superconductor/ferromagnet (S/F) superlattice with Co-ferromagnetic layers of various thicknesses and coercive fields and Nb-superconducting layers of constant thickness equal to the coherence length of niobium and some studies using computer simulation of the formation of such multilayer nanostructures and their magnetic properties are presented in this article.\",\"PeriodicalId\":13929,\"journal\":{\"name\":\"International Journal of Circuits, Systems and Signal Processing\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Circuits, Systems and Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46300/9106.2023.17.21\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Circuits, Systems and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46300/9106.2023.17.21","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

大幅降低功耗正成为超级计算机发展中的一项重要任务。基于自旋电子学超导元件的人工神经网络(ann)似乎是最有希望的解决方案。超导人工神经网络需要发展两个基本元素——非线性(神经元)和线性连接元素(突触)。本文介绍了这一复杂的跨学科问题的理论和实验结果。本文介绍了具有不同厚度和矫顽力场的共铁磁层和等于铌相干长度等厚度的铌-超导层的叠加超导体/铁磁(S/F)超晶格中邻近效应的理论和实验研究结果,以及利用计算机模拟这种多层纳米结构的形成及其磁性能的一些研究结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Base Elements for Artificial Neural Network: Structure Modeling, Production, Properties
A radical reduction in power consumption is becoming an important task in the development of supercomputers. Artificial neural networks (ANNs) based on superconducting elements of spintronics seem to be the most promising solution. A superconducting ANN needs to develop two basic elements - a nonlinear (neuron) and a linear connecting element (synapse). The theoretical and experimental results of this complex and interdisciplinary problem are presented in this paper. The results of our theoretical and experimental study of the proximity effect in a stacked superconductor/ferromagnet (S/F) superlattice with Co-ferromagnetic layers of various thicknesses and coercive fields and Nb-superconducting layers of constant thickness equal to the coherence length of niobium and some studies using computer simulation of the formation of such multilayer nanostructures and their magnetic properties are presented in this article.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Circuits, Systems and Signal Processing
International Journal of Circuits, Systems and Signal Processing Engineering-Electrical and Electronic Engineering
自引率
0.00%
发文量
155
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信