齐次非交换电路的新下界

Prerona Chatterjee, Pavel Hrubevs
{"title":"齐次非交换电路的新下界","authors":"Prerona Chatterjee, Pavel Hrubevs","doi":"10.48550/arXiv.2301.01676","DOIUrl":null,"url":null,"abstract":"We give several new lower bounds on size of homogeneous non-commutative circuits. We present an explicit homogeneous bivariate polynomial of degree $d$ which requires homogeneous non-commutative circuit of size $\\Omega(d/\\log d)$. For an $n$-variate polynomial with $n>1$, the result can be improved to $\\Omega(nd)$, if $d\\leq n$, or $\\Omega(nd \\frac{\\log n}{\\log d})$, if $d\\geq n$. Under the same assumptions, we also give a quadratic lower bound for the ordered version of the central symmetric polynomial.","PeriodicalId":11639,"journal":{"name":"Electron. Colloquium Comput. Complex.","volume":"58 1","pages":"13:1-13:10"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"New Lower Bounds against Homogeneous Non-Commutative Circuits\",\"authors\":\"Prerona Chatterjee, Pavel Hrubevs\",\"doi\":\"10.48550/arXiv.2301.01676\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We give several new lower bounds on size of homogeneous non-commutative circuits. We present an explicit homogeneous bivariate polynomial of degree $d$ which requires homogeneous non-commutative circuit of size $\\\\Omega(d/\\\\log d)$. For an $n$-variate polynomial with $n>1$, the result can be improved to $\\\\Omega(nd)$, if $d\\\\leq n$, or $\\\\Omega(nd \\\\frac{\\\\log n}{\\\\log d})$, if $d\\\\geq n$. Under the same assumptions, we also give a quadratic lower bound for the ordered version of the central symmetric polynomial.\",\"PeriodicalId\":11639,\"journal\":{\"name\":\"Electron. Colloquium Comput. Complex.\",\"volume\":\"58 1\",\"pages\":\"13:1-13:10\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electron. Colloquium Comput. Complex.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2301.01676\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electron. Colloquium Comput. Complex.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2301.01676","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

给出了齐次非交换电路尺寸的几个新的下界。我们给出了一个次为$d$的显式齐次二元多项式,它要求大小为$\Omega(d/\log d)$的齐次非交换电路。对于含有$n>1$的$n$ -变量多项式,如果是$d\leq n$,结果可以改进为$\Omega(nd)$,如果是$d\geq n$,结果可以改进为$\Omega(nd \frac{\log n}{\log d})$。在相同的假设下,我们也给出了中心对称多项式的有序版本的二次下界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
New Lower Bounds against Homogeneous Non-Commutative Circuits
We give several new lower bounds on size of homogeneous non-commutative circuits. We present an explicit homogeneous bivariate polynomial of degree $d$ which requires homogeneous non-commutative circuit of size $\Omega(d/\log d)$. For an $n$-variate polynomial with $n>1$, the result can be improved to $\Omega(nd)$, if $d\leq n$, or $\Omega(nd \frac{\log n}{\log d})$, if $d\geq n$. Under the same assumptions, we also give a quadratic lower bound for the ordered version of the central symmetric polynomial.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信