Talaromyces sp.、Cladosporium sp.和Albizia (Paraserianthes falcataria L. Nielsen)菌根在油泥植物修复中的应用:铅、镍、总石油烃(TPH)和多环芳烃(PAH)含量的变化

N. Rossiana, Kusmoro Joko, Dhahiyat Yayat
{"title":"Talaromyces sp.、Cladosporium sp.和Albizia (Paraserianthes falcataria L. Nielsen)菌根在油泥植物修复中的应用:铅、镍、总石油烃(TPH)和多环芳烃(PAH)含量的变化","authors":"N. Rossiana, Kusmoro Joko, Dhahiyat Yayat","doi":"10.4172/2157-7463.1000354","DOIUrl":null,"url":null,"abstract":"Aim: Phytoremediation is the use of microbial and rhizosphere systems to clean up a hazardous waste making it environmentally friendly,potentially zero waste and cost effective. Study on phytoremediation of oil sludge using consortium fungi (Talaromyces sp., Cladosporiumsp.) and mycorrhizae Albizia sp (sengon) was conducted. This study was aimed at evaluating the ability of consortium fungi and mycorrhizae in reducing heavy metal (Pb and Ni), Total Petroleum Hydrocarbon (TPH) and Polycyclic Aromatic Hydrocarbon (PAH) contents in contaminated soil.Methodology and results: Consortium fungi were inoculated into a compost medium containing 35% of oil sludge and monitored for two months and followed by planting mycorrhizae of sengon in the phytoremediation process. The changes of Pb and Ni, TPH, and PAH contents as well as the number of the fungi colonies in oil sludge medium were monitored every three weeks to eighteen weeks and analyzed during the remediation process. The relationship between the levels of Pb and Ni, that of TPH and the number of consortium fungi colonies were analyzed through regression correlation Thereafter, the PAH data were analyzed descriptively.Conclusion, significance and impact of study: The results showed that good interaction between Talaromyces sp, Cladosporium sp and microoganism rhizosphere on oily sludge phytoremediation resulted in the decrement of heavy metal content (Pb and Ni), TPH and PAH compounds. On eighteenth week of observation, reduction of Pb and Ni content in 35% oil sludge medium was approximately 71.9% and 67.9%, respectively. In every increment of 1 CFU ml-1, fungi consortium will affect the reduction in TPH levels to 0.286%. After fifteen weeks TPH content decreased to the lowest (70.82%), followed by the degradation of PAH compounds n-eicosane and n-hexatriacontane with carbon chains that range from C20-C36 to the shorter carbon chain (C16-C32) such as Hexadecane, 2, 6,10,14-tetramethyl, heneicosane, n-hexacosane, octadecane, 3-methyl and Dotriacontane.","PeriodicalId":16699,"journal":{"name":"Journal of Petroleum & Environmental Biotechnology","volume":"32 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Utilization of Talaromyces sp., Cladosporium sp. and Albizia (Paraserianthes falcataria L. Nielsen) Mycorrhizae on the Phytoremediation of Oil Sludge: Changes of Lead, Nickel, Total Petroleum Hydrocarbon (TPH) and Polycyclic Aromatic Hydrocarbons (PAH) Contents\",\"authors\":\"N. Rossiana, Kusmoro Joko, Dhahiyat Yayat\",\"doi\":\"10.4172/2157-7463.1000354\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aim: Phytoremediation is the use of microbial and rhizosphere systems to clean up a hazardous waste making it environmentally friendly,potentially zero waste and cost effective. Study on phytoremediation of oil sludge using consortium fungi (Talaromyces sp., Cladosporiumsp.) and mycorrhizae Albizia sp (sengon) was conducted. This study was aimed at evaluating the ability of consortium fungi and mycorrhizae in reducing heavy metal (Pb and Ni), Total Petroleum Hydrocarbon (TPH) and Polycyclic Aromatic Hydrocarbon (PAH) contents in contaminated soil.Methodology and results: Consortium fungi were inoculated into a compost medium containing 35% of oil sludge and monitored for two months and followed by planting mycorrhizae of sengon in the phytoremediation process. The changes of Pb and Ni, TPH, and PAH contents as well as the number of the fungi colonies in oil sludge medium were monitored every three weeks to eighteen weeks and analyzed during the remediation process. The relationship between the levels of Pb and Ni, that of TPH and the number of consortium fungi colonies were analyzed through regression correlation Thereafter, the PAH data were analyzed descriptively.Conclusion, significance and impact of study: The results showed that good interaction between Talaromyces sp, Cladosporium sp and microoganism rhizosphere on oily sludge phytoremediation resulted in the decrement of heavy metal content (Pb and Ni), TPH and PAH compounds. On eighteenth week of observation, reduction of Pb and Ni content in 35% oil sludge medium was approximately 71.9% and 67.9%, respectively. In every increment of 1 CFU ml-1, fungi consortium will affect the reduction in TPH levels to 0.286%. After fifteen weeks TPH content decreased to the lowest (70.82%), followed by the degradation of PAH compounds n-eicosane and n-hexatriacontane with carbon chains that range from C20-C36 to the shorter carbon chain (C16-C32) such as Hexadecane, 2, 6,10,14-tetramethyl, heneicosane, n-hexacosane, octadecane, 3-methyl and Dotriacontane.\",\"PeriodicalId\":16699,\"journal\":{\"name\":\"Journal of Petroleum & Environmental Biotechnology\",\"volume\":\"32 1\",\"pages\":\"1-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-01-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Petroleum & Environmental Biotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4172/2157-7463.1000354\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Petroleum & Environmental Biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4172/2157-7463.1000354","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

目的:植物修复是利用微生物和根际系统来清理有害废物,使其环境友好,潜在的零废物和成本效益。利用Talaromyces sp.、Cladosporiumsp.和霉根Albizia sp (sengon)对油泥进行植物修复研究。本研究旨在评价联合真菌和菌根对污染土壤中重金属(Pb、Ni)、总石油烃(TPH)和多环芳烃(PAH)含量的还原能力。方法与结果:将财团真菌接种到含35%油泥的堆肥培养基中,监测2个月,然后在植物修复过程中种植森根菌根。每3 ~ 18周监测一次油泥培养基中Pb、Ni、TPH、PAH含量的变化,并分析修复过程中菌落数量的变化。通过回归相关分析Pb、Ni水平、TPH水平与真菌菌落数之间的关系,并对PAH数据进行描述性分析。结论、研究意义及影响:结果表明,Talaromyces sp、Cladosporium sp与微生物根际间良好的相互作用对含油污泥的植物修复作用导致重金属(Pb和Ni)含量、TPH和PAH化合物的降低。在第18周的观察中,35%的油泥培养基中Pb和Ni含量分别降低了约71.9%和67.9%。每增加1 CFU ml-1,真菌联合体将影响TPH水平降低0.286%。15周后,TPH含量降至最低(70.82%),其次是碳链从c20 ~ c36到碳链较短(c16 ~ c32)的多环芳烃化合物,如十六烷、2、6、10、14-四甲基、十六烷、正六烷、十八烷、3-甲基和多三康烷。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Utilization of Talaromyces sp., Cladosporium sp. and Albizia (Paraserianthes falcataria L. Nielsen) Mycorrhizae on the Phytoremediation of Oil Sludge: Changes of Lead, Nickel, Total Petroleum Hydrocarbon (TPH) and Polycyclic Aromatic Hydrocarbons (PAH) Contents
Aim: Phytoremediation is the use of microbial and rhizosphere systems to clean up a hazardous waste making it environmentally friendly,potentially zero waste and cost effective. Study on phytoremediation of oil sludge using consortium fungi (Talaromyces sp., Cladosporiumsp.) and mycorrhizae Albizia sp (sengon) was conducted. This study was aimed at evaluating the ability of consortium fungi and mycorrhizae in reducing heavy metal (Pb and Ni), Total Petroleum Hydrocarbon (TPH) and Polycyclic Aromatic Hydrocarbon (PAH) contents in contaminated soil.Methodology and results: Consortium fungi were inoculated into a compost medium containing 35% of oil sludge and monitored for two months and followed by planting mycorrhizae of sengon in the phytoremediation process. The changes of Pb and Ni, TPH, and PAH contents as well as the number of the fungi colonies in oil sludge medium were monitored every three weeks to eighteen weeks and analyzed during the remediation process. The relationship between the levels of Pb and Ni, that of TPH and the number of consortium fungi colonies were analyzed through regression correlation Thereafter, the PAH data were analyzed descriptively.Conclusion, significance and impact of study: The results showed that good interaction between Talaromyces sp, Cladosporium sp and microoganism rhizosphere on oily sludge phytoremediation resulted in the decrement of heavy metal content (Pb and Ni), TPH and PAH compounds. On eighteenth week of observation, reduction of Pb and Ni content in 35% oil sludge medium was approximately 71.9% and 67.9%, respectively. In every increment of 1 CFU ml-1, fungi consortium will affect the reduction in TPH levels to 0.286%. After fifteen weeks TPH content decreased to the lowest (70.82%), followed by the degradation of PAH compounds n-eicosane and n-hexatriacontane with carbon chains that range from C20-C36 to the shorter carbon chain (C16-C32) such as Hexadecane, 2, 6,10,14-tetramethyl, heneicosane, n-hexacosane, octadecane, 3-methyl and Dotriacontane.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信