Tewodros A. Beyene, Swarat Chaudhuri, C. Popeea, A. Rybalchenko
{"title":"基于约束的无限图博弈求解方法","authors":"Tewodros A. Beyene, Swarat Chaudhuri, C. Popeea, A. Rybalchenko","doi":"10.1145/2535838.2535860","DOIUrl":null,"url":null,"abstract":"We present a constraint-based approach to computing winning strategies in two-player graph games over the state space of infinite-state programs. Such games have numerous applications in program verification and synthesis, including the synthesis of infinite-state reactive programs and branching-time verification of infinite-state programs. Our method handles games with winning conditions given by safety, reachability, and general Linear Temporal Logic (LTL) properties. For each property class, we give a deductive proof rule that --- provided a symbolic representation of the game players --- describes a winning strategy for a particular player. Our rules are sound and relatively complete. We show that these rules can be automated by using an off-the-shelf Horn constraint solver that supports existential quantification in clause heads. The practical promise of the rules is demonstrated through several case studies, including a challenging \"Cinderella-Stepmother game\" that allows infinite alternation of discrete and continuous choices by two players, as well as examples derived from prior work on program repair and synthesis.","PeriodicalId":20683,"journal":{"name":"Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages","volume":"60 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2014-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"88","resultStr":"{\"title\":\"A constraint-based approach to solving games on infinite graphs\",\"authors\":\"Tewodros A. Beyene, Swarat Chaudhuri, C. Popeea, A. Rybalchenko\",\"doi\":\"10.1145/2535838.2535860\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a constraint-based approach to computing winning strategies in two-player graph games over the state space of infinite-state programs. Such games have numerous applications in program verification and synthesis, including the synthesis of infinite-state reactive programs and branching-time verification of infinite-state programs. Our method handles games with winning conditions given by safety, reachability, and general Linear Temporal Logic (LTL) properties. For each property class, we give a deductive proof rule that --- provided a symbolic representation of the game players --- describes a winning strategy for a particular player. Our rules are sound and relatively complete. We show that these rules can be automated by using an off-the-shelf Horn constraint solver that supports existential quantification in clause heads. The practical promise of the rules is demonstrated through several case studies, including a challenging \\\"Cinderella-Stepmother game\\\" that allows infinite alternation of discrete and continuous choices by two players, as well as examples derived from prior work on program repair and synthesis.\",\"PeriodicalId\":20683,\"journal\":{\"name\":\"Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages\",\"volume\":\"60 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-01-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"88\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2535838.2535860\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2535838.2535860","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A constraint-based approach to solving games on infinite graphs
We present a constraint-based approach to computing winning strategies in two-player graph games over the state space of infinite-state programs. Such games have numerous applications in program verification and synthesis, including the synthesis of infinite-state reactive programs and branching-time verification of infinite-state programs. Our method handles games with winning conditions given by safety, reachability, and general Linear Temporal Logic (LTL) properties. For each property class, we give a deductive proof rule that --- provided a symbolic representation of the game players --- describes a winning strategy for a particular player. Our rules are sound and relatively complete. We show that these rules can be automated by using an off-the-shelf Horn constraint solver that supports existential quantification in clause heads. The practical promise of the rules is demonstrated through several case studies, including a challenging "Cinderella-Stepmother game" that allows infinite alternation of discrete and continuous choices by two players, as well as examples derived from prior work on program repair and synthesis.