在纯跳变过程中对波动的杠杆和长记忆建模

High Frequency Pub Date : 2019-07-02 DOI:10.1002/hf2.10042
Meng-Chen Hsieh, Clifford Hurvich, Philippe Soulier
{"title":"在纯跳变过程中对波动的杠杆和长记忆建模","authors":"Meng-Chen Hsieh,&nbsp;Clifford Hurvich,&nbsp;Philippe Soulier","doi":"10.1002/hf2.10042","DOIUrl":null,"url":null,"abstract":"<p>We propose a model for log asset prices in which the underlying transactions and price changes are governed by a marked Cox process. We derive tractable analytical expressions for the autocovariances of the returns, the squared returns, and the covariance of current returns and subsequent squared returns measured at fixed calendar-time frequency. We further prove that statistical properties of the derived return process match the stylized facts observed in empirical financial data such as short memory in returns, long memory in the counts (number of trades), long memory in the realized variance, and the leverage effect. Finally, we provide procedures for estimating the model parameters based on the transaction-level data for a special case of our model.</p>","PeriodicalId":100604,"journal":{"name":"High Frequency","volume":"2 3-4","pages":"124-141"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/hf2.10042","citationCount":"2","resultStr":"{\"title\":\"Modeling leverage and long memory in volatility in a pure-jump process\",\"authors\":\"Meng-Chen Hsieh,&nbsp;Clifford Hurvich,&nbsp;Philippe Soulier\",\"doi\":\"10.1002/hf2.10042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We propose a model for log asset prices in which the underlying transactions and price changes are governed by a marked Cox process. We derive tractable analytical expressions for the autocovariances of the returns, the squared returns, and the covariance of current returns and subsequent squared returns measured at fixed calendar-time frequency. We further prove that statistical properties of the derived return process match the stylized facts observed in empirical financial data such as short memory in returns, long memory in the counts (number of trades), long memory in the realized variance, and the leverage effect. Finally, we provide procedures for estimating the model parameters based on the transaction-level data for a special case of our model.</p>\",\"PeriodicalId\":100604,\"journal\":{\"name\":\"High Frequency\",\"volume\":\"2 3-4\",\"pages\":\"124-141\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1002/hf2.10042\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"High Frequency\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/hf2.10042\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"High Frequency","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/hf2.10042","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

我们提出了一个日志资产价格模型,其中基础交易和价格变化由一个显著的考克斯过程控制。我们为收益的自协方差、平方收益以及当前收益和随后在固定日历时间频率测量的平方收益的协方差推导出易于处理的解析表达式。我们进一步证明了所得收益过程的统计属性与经验金融数据中观察到的风式化事实相匹配,例如收益的短记忆,计数(交易数量)的长记忆,实现方差的长记忆以及杠杆效应。最后,我们为模型的一个特殊情况提供了基于事务级数据估计模型参数的过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Modeling leverage and long memory in volatility in a pure-jump process

Modeling leverage and long memory in volatility in a pure-jump process

We propose a model for log asset prices in which the underlying transactions and price changes are governed by a marked Cox process. We derive tractable analytical expressions for the autocovariances of the returns, the squared returns, and the covariance of current returns and subsequent squared returns measured at fixed calendar-time frequency. We further prove that statistical properties of the derived return process match the stylized facts observed in empirical financial data such as short memory in returns, long memory in the counts (number of trades), long memory in the realized variance, and the leverage effect. Finally, we provide procedures for estimating the model parameters based on the transaction-level data for a special case of our model.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信