{"title":"Urysohn引理从拓扑经开集转移到邻域拓扑的实例研究","authors":"Roland Coghetto","doi":"10.2478/forma-2020-0020","DOIUrl":null,"url":null,"abstract":"Summary Józef Białas and Yatsuka Nakamura has completely formalized a proof of Urysohn’s lemma in the article [4], in the context of a topological space defined via open sets. In the Mizar Mathematical Library (MML), the topological space is defined in this way by Beata Padlewska and Agata Darmochwał in the article [18]. In [7] the topological space is defined via neighborhoods. It is well known that these definitions are equivalent [5, 6]. In the definitions, an abstract structure (i.e. the article [17, STRUCT 0] and its descendants, all of them directly or indirectly using Mizar structures [3]) have been used (see [10], [9]). The first topological definition is based on the Mizar structure TopStruct and the topological space defined via neighborhoods with the Mizar structure: FMT Space Str. To emphasize the notion of a neighborhood, we rename FMT TopSpace (topology from neighbourhoods) to NTopSpace (a neighborhood topological space). Using Mizar [2], we transport the Urysohn’s lemma from TopSpace to NTop-Space. In some cases, Mizar allows certain techniques for transporting proofs, definitions or theorems. Generally speaking, there is no such automatic translating. In Coq, Isabelle/HOL or homotopy type theory transport is also studied, sometimes with a more systematic aim [14], [21], [11], [12], [8], [19]. In [1], two co-existing Isabelle libraries: Isabelle/HOL and Isabelle/Mizar, have been aligned in a single foundation in the Isabelle logical framework. In the MML, they have been used since the beginning: reconsider, registration, cluster, others were later implemented [13]: identify. In some proofs, it is possible to define particular functors between different structures, mainly useful when results are already obtained in a given structure. This technique is used, for example, in [15] to define two functors MXR2MXF and MXF2MXF between Matrix of REAL and Matrix of F-Real and to transport the definition of the addition from one structure to the other: [...] A + B -> Matrix of REAL equals MXF2MXR ((MXR2MXF A) + (MXR2MXF B)) [...]. In this paper, first we align the necessary topological concepts. For the formalization, we were inspired by the works of Claude Wagschal [20]. It allows us to transport more naturally the Urysohn’s lemma ([4, URYSOHN3:20]) to the topological space defined via neighborhoods. Nakasho and Shidama have developed a solution to explore the notions introduced in various ways https://mimosa-project.github.io/mmlreference/current/ [16]. The definitions can be directly linked in the HTML version of the Mizar library (example: Urysohn’s lemma http://mizar.org/version/current/html/urysohn3.html#T20).","PeriodicalId":42667,"journal":{"name":"Formalized Mathematics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Case Study of Transporting Urysohn’s Lemma from Topology via Open Sets into Topology via Neighborhoods\",\"authors\":\"Roland Coghetto\",\"doi\":\"10.2478/forma-2020-0020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Summary Józef Białas and Yatsuka Nakamura has completely formalized a proof of Urysohn’s lemma in the article [4], in the context of a topological space defined via open sets. In the Mizar Mathematical Library (MML), the topological space is defined in this way by Beata Padlewska and Agata Darmochwał in the article [18]. In [7] the topological space is defined via neighborhoods. It is well known that these definitions are equivalent [5, 6]. In the definitions, an abstract structure (i.e. the article [17, STRUCT 0] and its descendants, all of them directly or indirectly using Mizar structures [3]) have been used (see [10], [9]). The first topological definition is based on the Mizar structure TopStruct and the topological space defined via neighborhoods with the Mizar structure: FMT Space Str. To emphasize the notion of a neighborhood, we rename FMT TopSpace (topology from neighbourhoods) to NTopSpace (a neighborhood topological space). Using Mizar [2], we transport the Urysohn’s lemma from TopSpace to NTop-Space. In some cases, Mizar allows certain techniques for transporting proofs, definitions or theorems. Generally speaking, there is no such automatic translating. In Coq, Isabelle/HOL or homotopy type theory transport is also studied, sometimes with a more systematic aim [14], [21], [11], [12], [8], [19]. In [1], two co-existing Isabelle libraries: Isabelle/HOL and Isabelle/Mizar, have been aligned in a single foundation in the Isabelle logical framework. In the MML, they have been used since the beginning: reconsider, registration, cluster, others were later implemented [13]: identify. In some proofs, it is possible to define particular functors between different structures, mainly useful when results are already obtained in a given structure. This technique is used, for example, in [15] to define two functors MXR2MXF and MXF2MXF between Matrix of REAL and Matrix of F-Real and to transport the definition of the addition from one structure to the other: [...] A + B -> Matrix of REAL equals MXF2MXR ((MXR2MXF A) + (MXR2MXF B)) [...]. In this paper, first we align the necessary topological concepts. For the formalization, we were inspired by the works of Claude Wagschal [20]. It allows us to transport more naturally the Urysohn’s lemma ([4, URYSOHN3:20]) to the topological space defined via neighborhoods. Nakasho and Shidama have developed a solution to explore the notions introduced in various ways https://mimosa-project.github.io/mmlreference/current/ [16]. The definitions can be directly linked in the HTML version of the Mizar library (example: Urysohn’s lemma http://mizar.org/version/current/html/urysohn3.html#T20).\",\"PeriodicalId\":42667,\"journal\":{\"name\":\"Formalized Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2020-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Formalized Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/forma-2020-0020\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Formalized Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/forma-2020-0020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
A Case Study of Transporting Urysohn’s Lemma from Topology via Open Sets into Topology via Neighborhoods
Summary Józef Białas and Yatsuka Nakamura has completely formalized a proof of Urysohn’s lemma in the article [4], in the context of a topological space defined via open sets. In the Mizar Mathematical Library (MML), the topological space is defined in this way by Beata Padlewska and Agata Darmochwał in the article [18]. In [7] the topological space is defined via neighborhoods. It is well known that these definitions are equivalent [5, 6]. In the definitions, an abstract structure (i.e. the article [17, STRUCT 0] and its descendants, all of them directly or indirectly using Mizar structures [3]) have been used (see [10], [9]). The first topological definition is based on the Mizar structure TopStruct and the topological space defined via neighborhoods with the Mizar structure: FMT Space Str. To emphasize the notion of a neighborhood, we rename FMT TopSpace (topology from neighbourhoods) to NTopSpace (a neighborhood topological space). Using Mizar [2], we transport the Urysohn’s lemma from TopSpace to NTop-Space. In some cases, Mizar allows certain techniques for transporting proofs, definitions or theorems. Generally speaking, there is no such automatic translating. In Coq, Isabelle/HOL or homotopy type theory transport is also studied, sometimes with a more systematic aim [14], [21], [11], [12], [8], [19]. In [1], two co-existing Isabelle libraries: Isabelle/HOL and Isabelle/Mizar, have been aligned in a single foundation in the Isabelle logical framework. In the MML, they have been used since the beginning: reconsider, registration, cluster, others were later implemented [13]: identify. In some proofs, it is possible to define particular functors between different structures, mainly useful when results are already obtained in a given structure. This technique is used, for example, in [15] to define two functors MXR2MXF and MXF2MXF between Matrix of REAL and Matrix of F-Real and to transport the definition of the addition from one structure to the other: [...] A + B -> Matrix of REAL equals MXF2MXR ((MXR2MXF A) + (MXR2MXF B)) [...]. In this paper, first we align the necessary topological concepts. For the formalization, we were inspired by the works of Claude Wagschal [20]. It allows us to transport more naturally the Urysohn’s lemma ([4, URYSOHN3:20]) to the topological space defined via neighborhoods. Nakasho and Shidama have developed a solution to explore the notions introduced in various ways https://mimosa-project.github.io/mmlreference/current/ [16]. The definitions can be directly linked in the HTML version of the Mizar library (example: Urysohn’s lemma http://mizar.org/version/current/html/urysohn3.html#T20).
期刊介绍:
Formalized Mathematics is to be issued quarterly and publishes papers which are abstracts of Mizar articles contributed to the Mizar Mathematical Library (MML) - the basis of a knowledge management system for mathematics.