牛奶巴氏杀菌纳米流体板式换热器性能分析

Q4 Engineering
Mohamed Thoufick K
{"title":"牛奶巴氏杀菌纳米流体板式换热器性能分析","authors":"Mohamed Thoufick K","doi":"10.37255/jme.v16i1pp007-011","DOIUrl":null,"url":null,"abstract":"Experimentally to analyzed the enhance performance of Plate heat exchanger in milk pasteurization process using nanofluid at different concentration of 0.1%,0.15%,0.2% 0.25% and 0.3%. in this work the nanoparticles like Al2O3 and the base fluid like dematerialized water is used to prepare nanofluid by using two steps method. Exchanger is one of the thermal energy transferring devices, which transfer the heat between different fluids. This is widely used in different application because of its compact in size and higher efficiency compared to other type of heat exchanger. The main focus of using nanofluid is that it has improvement in thermal conductivity. Then the hot fluid as milk and cold fluid as nanofluids are used. The heat transfer rate is increased with increasing the concentration of nanofluid. It conducted by varying operating parameters like mass flow rate of hot milk, mass flow rate of nanofluid, inlet and outlet temperatures of hot milk and inlet outlet temperature of nanofluid. The main objective of this work is to find out mass flow rate and overall, all heat transfer coefficient.","PeriodicalId":38895,"journal":{"name":"Academic Journal of Manufacturing Engineering","volume":"48 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performance Analysis of Plate Heat Exchanger with Nanofluid using Milk Pasteurization\",\"authors\":\"Mohamed Thoufick K\",\"doi\":\"10.37255/jme.v16i1pp007-011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Experimentally to analyzed the enhance performance of Plate heat exchanger in milk pasteurization process using nanofluid at different concentration of 0.1%,0.15%,0.2% 0.25% and 0.3%. in this work the nanoparticles like Al2O3 and the base fluid like dematerialized water is used to prepare nanofluid by using two steps method. Exchanger is one of the thermal energy transferring devices, which transfer the heat between different fluids. This is widely used in different application because of its compact in size and higher efficiency compared to other type of heat exchanger. The main focus of using nanofluid is that it has improvement in thermal conductivity. Then the hot fluid as milk and cold fluid as nanofluids are used. The heat transfer rate is increased with increasing the concentration of nanofluid. It conducted by varying operating parameters like mass flow rate of hot milk, mass flow rate of nanofluid, inlet and outlet temperatures of hot milk and inlet outlet temperature of nanofluid. The main objective of this work is to find out mass flow rate and overall, all heat transfer coefficient.\",\"PeriodicalId\":38895,\"journal\":{\"name\":\"Academic Journal of Manufacturing Engineering\",\"volume\":\"48 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Academic Journal of Manufacturing Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37255/jme.v16i1pp007-011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Academic Journal of Manufacturing Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37255/jme.v16i1pp007-011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

实验分析了纳米流体浓度分别为0.1%、0.15%、0.2%、0.25%和0.3%对板式换热器在牛奶巴氏杀菌过程中的强化作用。本文采用两步法,以Al2O3等纳米颗粒和去物质化水等基础流体为原料制备纳米流体。换热器是在不同流体之间传递热量的传热装置之一。与其他类型的热交换器相比,由于其体积小,效率高,因此广泛应用于不同的应用中。纳米流体的主要用途是提高其导热性。然后使用热流体如牛奶和冷流体如纳米流体。传热速率随纳米流体浓度的增加而增加。通过改变热牛奶质量流量、纳米流体质量流量、热牛奶进出口温度、纳米流体进出口温度等操作参数进行。这项工作的主要目的是找出质量流量和总传热系数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Performance Analysis of Plate Heat Exchanger with Nanofluid using Milk Pasteurization
Experimentally to analyzed the enhance performance of Plate heat exchanger in milk pasteurization process using nanofluid at different concentration of 0.1%,0.15%,0.2% 0.25% and 0.3%. in this work the nanoparticles like Al2O3 and the base fluid like dematerialized water is used to prepare nanofluid by using two steps method. Exchanger is one of the thermal energy transferring devices, which transfer the heat between different fluids. This is widely used in different application because of its compact in size and higher efficiency compared to other type of heat exchanger. The main focus of using nanofluid is that it has improvement in thermal conductivity. Then the hot fluid as milk and cold fluid as nanofluids are used. The heat transfer rate is increased with increasing the concentration of nanofluid. It conducted by varying operating parameters like mass flow rate of hot milk, mass flow rate of nanofluid, inlet and outlet temperatures of hot milk and inlet outlet temperature of nanofluid. The main objective of this work is to find out mass flow rate and overall, all heat transfer coefficient.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Academic Journal of Manufacturing Engineering
Academic Journal of Manufacturing Engineering Engineering-Industrial and Manufacturing Engineering
CiteScore
0.40
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信