算法交易与买卖价差,波动性和利润和损失的分配:模拟

Arne Breuer, Hans-Peter Burghof
{"title":"算法交易与买卖价差,波动性和利润和损失的分配:模拟","authors":"Arne Breuer, Hans-Peter Burghof","doi":"10.2139/ssrn.2200075","DOIUrl":null,"url":null,"abstract":"Algorithmic trading leads to contradictory conclusions of market participants and observers: While the former blame it to break the market, the latter find it makes it better. To explain these contradictory views, we create a few-type market simulation in a discrete-time, one-asset world. We analyse both the observable factors average bid-offer spread and volatility as well as the unobservable distribution of profits and losses of the market participants. We conclude that regarding HFT, market observers and market participants talk at cross-purposes.","PeriodicalId":11800,"journal":{"name":"ERN: Stock Market Risk (Topic)","volume":"13 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2013-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Algorithmic Trading vs. Bid-Offer Spreads, Volatility, and the Distribution of Profits and Losses: A Simulation\",\"authors\":\"Arne Breuer, Hans-Peter Burghof\",\"doi\":\"10.2139/ssrn.2200075\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Algorithmic trading leads to contradictory conclusions of market participants and observers: While the former blame it to break the market, the latter find it makes it better. To explain these contradictory views, we create a few-type market simulation in a discrete-time, one-asset world. We analyse both the observable factors average bid-offer spread and volatility as well as the unobservable distribution of profits and losses of the market participants. We conclude that regarding HFT, market observers and market participants talk at cross-purposes.\",\"PeriodicalId\":11800,\"journal\":{\"name\":\"ERN: Stock Market Risk (Topic)\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ERN: Stock Market Risk (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.2200075\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Stock Market Risk (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.2200075","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

算法交易让市场参与者和观察人士得出了相互矛盾的结论:前者指责算法交易破坏了市场,后者认为算法交易让市场变得更好。为了解释这些相互矛盾的观点,我们在一个离散时间、单一资产的世界中创建了几种类型的市场模拟。我们既分析了可观察因素平均买卖价差和波动率,也分析了市场参与者不可观察的盈亏分布。我们的结论是,关于高频交易,市场观察者和市场参与者的谈话是相互矛盾的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Algorithmic Trading vs. Bid-Offer Spreads, Volatility, and the Distribution of Profits and Losses: A Simulation
Algorithmic trading leads to contradictory conclusions of market participants and observers: While the former blame it to break the market, the latter find it makes it better. To explain these contradictory views, we create a few-type market simulation in a discrete-time, one-asset world. We analyse both the observable factors average bid-offer spread and volatility as well as the unobservable distribution of profits and losses of the market participants. We conclude that regarding HFT, market observers and market participants talk at cross-purposes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信