有限维Banach空间正锥上$\varepsilon$-等距的稳定性

Pub Date : 2020-12-01 DOI:10.36045/j.bbms.200413
Longfa Sun, Ya-jing Ma
{"title":"有限维Banach空间正锥上$\\varepsilon$-等距的稳定性","authors":"Longfa Sun, Ya-jing Ma","doi":"10.36045/j.bbms.200413","DOIUrl":null,"url":null,"abstract":"A weak stability bound for the $\\varepsilon$-isometry $f$ form the positive cone of a reflexive, strictly convex and Gateaux smooth Banach lattice $X$ to a Banach space $Y$ is presented. This result is used to prove the stability theorem for the $\\varepsilon$-isometry $f:(\\mathbb{R}^n)^+\\rightarrow Y$, where $\\mathbb{R}^n$ is the $n$-dimensional space equipped with a $1$-unconditional norm and $Y$ is a n-dimensional, strictly convex and Gateaux smooth space.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stability of $\\\\varepsilon$-isometries on the positive cones of finite-dimensional Banach spaces\",\"authors\":\"Longfa Sun, Ya-jing Ma\",\"doi\":\"10.36045/j.bbms.200413\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A weak stability bound for the $\\\\varepsilon$-isometry $f$ form the positive cone of a reflexive, strictly convex and Gateaux smooth Banach lattice $X$ to a Banach space $Y$ is presented. This result is used to prove the stability theorem for the $\\\\varepsilon$-isometry $f:(\\\\mathbb{R}^n)^+\\\\rightarrow Y$, where $\\\\mathbb{R}^n$ is the $n$-dimensional space equipped with a $1$-unconditional norm and $Y$ is a n-dimensional, strictly convex and Gateaux smooth space.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.36045/j.bbms.200413\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.36045/j.bbms.200413","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

给出了自反的严格凸的Gateaux光滑的Banach格$X$到Banach空间$Y$的正锥的$\varepsilon$ -等距$f$的弱稳定性界。该结果用于证明$\varepsilon$ -等距$f:(\mathbb{R}^n)^+\rightarrow Y$的稳定性定理,其中$\mathbb{R}^n$为具有$1$ -无条件范数的$n$维空间,$Y$为n维严格凸和Gateaux光滑空间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Stability of $\varepsilon$-isometries on the positive cones of finite-dimensional Banach spaces
A weak stability bound for the $\varepsilon$-isometry $f$ form the positive cone of a reflexive, strictly convex and Gateaux smooth Banach lattice $X$ to a Banach space $Y$ is presented. This result is used to prove the stability theorem for the $\varepsilon$-isometry $f:(\mathbb{R}^n)^+\rightarrow Y$, where $\mathbb{R}^n$ is the $n$-dimensional space equipped with a $1$-unconditional norm and $Y$ is a n-dimensional, strictly convex and Gateaux smooth space.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信