有限维Banach空间正锥上$\varepsilon$-等距的稳定性

IF 0.4 4区 数学 Q4 MATHEMATICS
Longfa Sun, Ya-jing Ma
{"title":"有限维Banach空间正锥上$\\varepsilon$-等距的稳定性","authors":"Longfa Sun, Ya-jing Ma","doi":"10.36045/j.bbms.200413","DOIUrl":null,"url":null,"abstract":"A weak stability bound for the $\\varepsilon$-isometry $f$ form the positive cone of a reflexive, strictly convex and Gateaux smooth Banach lattice $X$ to a Banach space $Y$ is presented. This result is used to prove the stability theorem for the $\\varepsilon$-isometry $f:(\\mathbb{R}^n)^+\\rightarrow Y$, where $\\mathbb{R}^n$ is the $n$-dimensional space equipped with a $1$-unconditional norm and $Y$ is a n-dimensional, strictly convex and Gateaux smooth space.","PeriodicalId":55309,"journal":{"name":"Bulletin of the Belgian Mathematical Society-Simon Stevin","volume":"1 1","pages":"789-800"},"PeriodicalIF":0.4000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stability of $\\\\varepsilon$-isometries on the positive cones of finite-dimensional Banach spaces\",\"authors\":\"Longfa Sun, Ya-jing Ma\",\"doi\":\"10.36045/j.bbms.200413\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A weak stability bound for the $\\\\varepsilon$-isometry $f$ form the positive cone of a reflexive, strictly convex and Gateaux smooth Banach lattice $X$ to a Banach space $Y$ is presented. This result is used to prove the stability theorem for the $\\\\varepsilon$-isometry $f:(\\\\mathbb{R}^n)^+\\\\rightarrow Y$, where $\\\\mathbb{R}^n$ is the $n$-dimensional space equipped with a $1$-unconditional norm and $Y$ is a n-dimensional, strictly convex and Gateaux smooth space.\",\"PeriodicalId\":55309,\"journal\":{\"name\":\"Bulletin of the Belgian Mathematical Society-Simon Stevin\",\"volume\":\"1 1\",\"pages\":\"789-800\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the Belgian Mathematical Society-Simon Stevin\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.36045/j.bbms.200413\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Belgian Mathematical Society-Simon Stevin","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.36045/j.bbms.200413","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

给出了自反的严格凸的Gateaux光滑的Banach格$X$到Banach空间$Y$的正锥的$\varepsilon$ -等距$f$的弱稳定性界。该结果用于证明$\varepsilon$ -等距$f:(\mathbb{R}^n)^+\rightarrow Y$的稳定性定理,其中$\mathbb{R}^n$为具有$1$ -无条件范数的$n$维空间,$Y$为n维严格凸和Gateaux光滑空间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stability of $\varepsilon$-isometries on the positive cones of finite-dimensional Banach spaces
A weak stability bound for the $\varepsilon$-isometry $f$ form the positive cone of a reflexive, strictly convex and Gateaux smooth Banach lattice $X$ to a Banach space $Y$ is presented. This result is used to prove the stability theorem for the $\varepsilon$-isometry $f:(\mathbb{R}^n)^+\rightarrow Y$, where $\mathbb{R}^n$ is the $n$-dimensional space equipped with a $1$-unconditional norm and $Y$ is a n-dimensional, strictly convex and Gateaux smooth space.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
14
审稿时长
6-12 weeks
期刊介绍: The Bulletin of the Belgian Mathematical Society - Simon Stevin (BBMS) is a peer-reviewed journal devoted to recent developments in all areas in pure and applied mathematics. It is published as one yearly volume, containing five issues. The main focus lies on high level original research papers. They should aim to a broader mathematical audience in the sense that a well-written introduction is attractive to mathematicians outside the circle of experts in the subject, bringing motivation, background information, history and philosophy. The content has to be substantial enough: short one-small-result papers will not be taken into account in general, unless there are some particular arguments motivating publication, like an original point of view, a new short proof of a famous result etc. The BBMS also publishes expository papers that bring the state of the art of a current mainstream topic in mathematics. Here it is even more important that at leat a substantial part of the paper is accessible to a broader audience of mathematicians. The BBMS publishes papers in English, Dutch, French and German. All papers should have an abstract in English.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信