{"title":"有限维Banach空间正锥上$\\varepsilon$-等距的稳定性","authors":"Longfa Sun, Ya-jing Ma","doi":"10.36045/j.bbms.200413","DOIUrl":null,"url":null,"abstract":"A weak stability bound for the $\\varepsilon$-isometry $f$ form the positive cone of a reflexive, strictly convex and Gateaux smooth Banach lattice $X$ to a Banach space $Y$ is presented. This result is used to prove the stability theorem for the $\\varepsilon$-isometry $f:(\\mathbb{R}^n)^+\\rightarrow Y$, where $\\mathbb{R}^n$ is the $n$-dimensional space equipped with a $1$-unconditional norm and $Y$ is a n-dimensional, strictly convex and Gateaux smooth space.","PeriodicalId":55309,"journal":{"name":"Bulletin of the Belgian Mathematical Society-Simon Stevin","volume":"1 1","pages":"789-800"},"PeriodicalIF":0.4000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stability of $\\\\varepsilon$-isometries on the positive cones of finite-dimensional Banach spaces\",\"authors\":\"Longfa Sun, Ya-jing Ma\",\"doi\":\"10.36045/j.bbms.200413\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A weak stability bound for the $\\\\varepsilon$-isometry $f$ form the positive cone of a reflexive, strictly convex and Gateaux smooth Banach lattice $X$ to a Banach space $Y$ is presented. This result is used to prove the stability theorem for the $\\\\varepsilon$-isometry $f:(\\\\mathbb{R}^n)^+\\\\rightarrow Y$, where $\\\\mathbb{R}^n$ is the $n$-dimensional space equipped with a $1$-unconditional norm and $Y$ is a n-dimensional, strictly convex and Gateaux smooth space.\",\"PeriodicalId\":55309,\"journal\":{\"name\":\"Bulletin of the Belgian Mathematical Society-Simon Stevin\",\"volume\":\"1 1\",\"pages\":\"789-800\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the Belgian Mathematical Society-Simon Stevin\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.36045/j.bbms.200413\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Belgian Mathematical Society-Simon Stevin","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.36045/j.bbms.200413","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
Stability of $\varepsilon$-isometries on the positive cones of finite-dimensional Banach spaces
A weak stability bound for the $\varepsilon$-isometry $f$ form the positive cone of a reflexive, strictly convex and Gateaux smooth Banach lattice $X$ to a Banach space $Y$ is presented. This result is used to prove the stability theorem for the $\varepsilon$-isometry $f:(\mathbb{R}^n)^+\rightarrow Y$, where $\mathbb{R}^n$ is the $n$-dimensional space equipped with a $1$-unconditional norm and $Y$ is a n-dimensional, strictly convex and Gateaux smooth space.
期刊介绍:
The Bulletin of the Belgian Mathematical Society - Simon Stevin (BBMS) is a peer-reviewed journal devoted to recent developments in all areas in pure and applied mathematics. It is published as one yearly volume, containing five issues.
The main focus lies on high level original research papers. They should aim to a broader mathematical audience in the sense that a well-written introduction is attractive to mathematicians outside the circle of experts in the subject, bringing motivation, background information, history and philosophy. The content has to be substantial enough: short one-small-result papers will not be taken into account in general, unless there are some particular arguments motivating publication, like an original point of view, a new short proof of a famous result etc.
The BBMS also publishes expository papers that bring the state of the art of a current mainstream topic in mathematics. Here it is even more important that at leat a substantial part of the paper is accessible to a broader audience of mathematicians.
The BBMS publishes papers in English, Dutch, French and German. All papers should have an abstract in English.