图的广义距离矩阵的谱半径和Nordhaus-Gaddum型不等式

IF 1 Q1 MATHEMATICS
M. Merajuddin, S. Bhatnagar, S. Pirzada
{"title":"图的广义距离矩阵的谱半径和Nordhaus-Gaddum型不等式","authors":"M. Merajuddin, S. Bhatnagar, S. Pirzada","doi":"10.15330/cmp.14.1.185-193","DOIUrl":null,"url":null,"abstract":"If $Tr(G)$ and $D(G)$ are respectively the diagonal matrix of vertex transmission degrees and distance matrix of a connected graph $G$, the generalized distance matrix $D_{\\alpha}(G)$ is defined as $D_{\\alpha}(G)=\\alpha ~Tr(G)+(1-\\alpha)~D(G)$, where $0\\leq \\alpha \\leq 1$. If $\\rho_1 \\geq \\rho_2 \\geq \\dots \\geq \\rho_n$ are the eigenvalues of $D_{\\alpha}(G)$, the largest eigenvalue $\\rho_1$ (or $\\rho_{\\alpha}(G)$) is called the spectral radius of the generalized distance matrix $D_{\\alpha}(G)$. The generalized distance energy is defined as $E^{D_{\\alpha}}(G)=\\sum_{i=1}^{n}\\left|\\rho_i -\\frac{2\\alpha W(G)}{n}\\right|$, where $W(G)$ is the Wiener index of $G$. In this paper, we obtain the bounds for the spectral radius $\\rho_{\\alpha}(G)$ and the generalized distance energy of $G$ involving Wiener index. We derive the Nordhaus-Gaddum type inequalities for the spectral radius and the generalized distance energy of $G$.","PeriodicalId":42912,"journal":{"name":"Carpathian Mathematical Publications","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2022-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On spectral radius and Nordhaus-Gaddum type inequalities of the generalized distance matrix of graphs\",\"authors\":\"M. Merajuddin, S. Bhatnagar, S. Pirzada\",\"doi\":\"10.15330/cmp.14.1.185-193\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"If $Tr(G)$ and $D(G)$ are respectively the diagonal matrix of vertex transmission degrees and distance matrix of a connected graph $G$, the generalized distance matrix $D_{\\\\alpha}(G)$ is defined as $D_{\\\\alpha}(G)=\\\\alpha ~Tr(G)+(1-\\\\alpha)~D(G)$, where $0\\\\leq \\\\alpha \\\\leq 1$. If $\\\\rho_1 \\\\geq \\\\rho_2 \\\\geq \\\\dots \\\\geq \\\\rho_n$ are the eigenvalues of $D_{\\\\alpha}(G)$, the largest eigenvalue $\\\\rho_1$ (or $\\\\rho_{\\\\alpha}(G)$) is called the spectral radius of the generalized distance matrix $D_{\\\\alpha}(G)$. The generalized distance energy is defined as $E^{D_{\\\\alpha}}(G)=\\\\sum_{i=1}^{n}\\\\left|\\\\rho_i -\\\\frac{2\\\\alpha W(G)}{n}\\\\right|$, where $W(G)$ is the Wiener index of $G$. In this paper, we obtain the bounds for the spectral radius $\\\\rho_{\\\\alpha}(G)$ and the generalized distance energy of $G$ involving Wiener index. We derive the Nordhaus-Gaddum type inequalities for the spectral radius and the generalized distance energy of $G$.\",\"PeriodicalId\":42912,\"journal\":{\"name\":\"Carpathian Mathematical Publications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carpathian Mathematical Publications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15330/cmp.14.1.185-193\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carpathian Mathematical Publications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15330/cmp.14.1.185-193","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

若$Tr(G)$和$D(G)$分别为连通图的顶点传输度对角矩阵和距离矩阵$G$,则定义广义距离矩阵$D_{\alpha}(G)$为$D_{\alpha}(G)=\alpha ~Tr(G)+(1-\alpha)~D(G)$,其中$0\leq \alpha \leq 1$。如果$\rho_1 \geq \rho_2 \geq \dots \geq \rho_n$是$D_{\alpha}(G)$的特征值,则最大的特征值$\rho_1$(或$\rho_{\alpha}(G)$)称为广义距离矩阵$D_{\alpha}(G)$的谱半径。广义距离能量定义为$E^{D_{\alpha}}(G)=\sum_{i=1}^{n}\left|\rho_i -\frac{2\alpha W(G)}{n}\right|$,其中$W(G)$为$G$的Wiener指数。本文得到了涉及Wiener指数的谱半径$\rho_{\alpha}(G)$和广义距离能量$G$的界。我们导出了$G$的谱半径和广义距离能量的Nordhaus-Gaddum型不等式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On spectral radius and Nordhaus-Gaddum type inequalities of the generalized distance matrix of graphs
If $Tr(G)$ and $D(G)$ are respectively the diagonal matrix of vertex transmission degrees and distance matrix of a connected graph $G$, the generalized distance matrix $D_{\alpha}(G)$ is defined as $D_{\alpha}(G)=\alpha ~Tr(G)+(1-\alpha)~D(G)$, where $0\leq \alpha \leq 1$. If $\rho_1 \geq \rho_2 \geq \dots \geq \rho_n$ are the eigenvalues of $D_{\alpha}(G)$, the largest eigenvalue $\rho_1$ (or $\rho_{\alpha}(G)$) is called the spectral radius of the generalized distance matrix $D_{\alpha}(G)$. The generalized distance energy is defined as $E^{D_{\alpha}}(G)=\sum_{i=1}^{n}\left|\rho_i -\frac{2\alpha W(G)}{n}\right|$, where $W(G)$ is the Wiener index of $G$. In this paper, we obtain the bounds for the spectral radius $\rho_{\alpha}(G)$ and the generalized distance energy of $G$ involving Wiener index. We derive the Nordhaus-Gaddum type inequalities for the spectral radius and the generalized distance energy of $G$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
12.50%
发文量
31
审稿时长
25 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信