分段范畴与不动点性质

C. A. I. Zapata, Jes'us Gonz'alez
{"title":"分段范畴与不动点性质","authors":"C. A. I. Zapata, Jes'us Gonz'alez","doi":"10.12775/tmna.2020.033","DOIUrl":null,"url":null,"abstract":"In this work we exhibit an unexpected connection between sectional category theory and the fixed point property. On the one hand, a topological space $X$ is said to have \\textit{the fixed point property} (FPP) if, for every continuous self-map $f$ of $X$, there is a point $x$ of $X$ such that $f(x)=x$. On the other hand, for a continuous surjection $p:E\\to B$, the \\textit{standard sectional number} $sec_{\\text{op}}(p)$ is the minimal cardinality of open covers $\\{U_i\\}$ of $B$ such that each $U_i$ admits a continuous local section for $p$. Let $F(X,k)$ denote the configuration space of $k$ ordered distinct points in $X$ and consider the natural projection $\\pi_{k,1}:F(X,k)\\to X$. We demonstrate that a space $X$ has the FPP if and only if $sec_{\\text{op}}(\\pi_{2,1})=2$. This characterization connects a standard problem in fixed point theory to current research trends in topological robotics.","PeriodicalId":8433,"journal":{"name":"arXiv: Algebraic Topology","volume":"24 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Sectional category and the fixed point property\",\"authors\":\"C. A. I. Zapata, Jes'us Gonz'alez\",\"doi\":\"10.12775/tmna.2020.033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work we exhibit an unexpected connection between sectional category theory and the fixed point property. On the one hand, a topological space $X$ is said to have \\\\textit{the fixed point property} (FPP) if, for every continuous self-map $f$ of $X$, there is a point $x$ of $X$ such that $f(x)=x$. On the other hand, for a continuous surjection $p:E\\\\to B$, the \\\\textit{standard sectional number} $sec_{\\\\text{op}}(p)$ is the minimal cardinality of open covers $\\\\{U_i\\\\}$ of $B$ such that each $U_i$ admits a continuous local section for $p$. Let $F(X,k)$ denote the configuration space of $k$ ordered distinct points in $X$ and consider the natural projection $\\\\pi_{k,1}:F(X,k)\\\\to X$. We demonstrate that a space $X$ has the FPP if and only if $sec_{\\\\text{op}}(\\\\pi_{2,1})=2$. This characterization connects a standard problem in fixed point theory to current research trends in topological robotics.\",\"PeriodicalId\":8433,\"journal\":{\"name\":\"arXiv: Algebraic Topology\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Algebraic Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12775/tmna.2020.033\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Algebraic Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12775/tmna.2020.033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在这项工作中,我们展示了区段范畴论和不动点性质之间的一个意想不到的联系。一方面,我们说拓扑空间$X$具有不\textit{动点性质}(FPP),如果对于$X$的每一个连续自映射$f$,存在$X$的一个点$x$使得$f(x)=x$。另一方面,对于连续抛射$p:E\to B$,\textit{标准分段数}$sec_{\text{op}}(p)$是$B$的开盖$\{U_i\}$的最小基数,使得每个$U_i$都允许$p$的连续局部分段。设$F(X,k)$表示$X$中$k$有序不同点的位形空间,并考虑其自然投影$\pi_{k,1}:F(X,k)\to X$。我们证明了空间$X$具有FPP当且仅当$sec_{\text{op}}(\pi_{2,1})=2$。这种描述将不动点理论中的标准问题与拓扑机器人的当前研究趋势联系起来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sectional category and the fixed point property
In this work we exhibit an unexpected connection between sectional category theory and the fixed point property. On the one hand, a topological space $X$ is said to have \textit{the fixed point property} (FPP) if, for every continuous self-map $f$ of $X$, there is a point $x$ of $X$ such that $f(x)=x$. On the other hand, for a continuous surjection $p:E\to B$, the \textit{standard sectional number} $sec_{\text{op}}(p)$ is the minimal cardinality of open covers $\{U_i\}$ of $B$ such that each $U_i$ admits a continuous local section for $p$. Let $F(X,k)$ denote the configuration space of $k$ ordered distinct points in $X$ and consider the natural projection $\pi_{k,1}:F(X,k)\to X$. We demonstrate that a space $X$ has the FPP if and only if $sec_{\text{op}}(\pi_{2,1})=2$. This characterization connects a standard problem in fixed point theory to current research trends in topological robotics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信