张量三角分类的扭转模型:一步情况

IF 0.6 3区 数学 Q3 MATHEMATICS
Scott Balchin, J. Greenlees, Luca Pol, J. Williamson
{"title":"张量三角分类的扭转模型:一步情况","authors":"Scott Balchin, J. Greenlees, Luca Pol, J. Williamson","doi":"10.2140/agt.2022.22.2805","DOIUrl":null,"url":null,"abstract":"Given a suitable stable monoidal model category $\\mathscr{C}$ and a specialization closed subset $V$ of its Balmer spectrum one can produce a Tate square for decomposing objects into the part supported over $V$ and the part supported over $V^c$ spliced with the Tate object. Using this one can show that $\\mathscr{C}$ is Quillen equivalent to a model built from the data of local torsion objects, and the splicing data lies in a rather rich category. As an application, we promote the torsion model for the homotopy category of rational circle-equivariant spectra from [16] to a Quillen equivalence. In addition, a close analysis of the one step case highlights important features needed for general torsion models which we will return to in future work.","PeriodicalId":50826,"journal":{"name":"Algebraic and Geometric Topology","volume":"118 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2020-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Torsion models for tensor-triangulated categories: the one-step case\",\"authors\":\"Scott Balchin, J. Greenlees, Luca Pol, J. Williamson\",\"doi\":\"10.2140/agt.2022.22.2805\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given a suitable stable monoidal model category $\\\\mathscr{C}$ and a specialization closed subset $V$ of its Balmer spectrum one can produce a Tate square for decomposing objects into the part supported over $V$ and the part supported over $V^c$ spliced with the Tate object. Using this one can show that $\\\\mathscr{C}$ is Quillen equivalent to a model built from the data of local torsion objects, and the splicing data lies in a rather rich category. As an application, we promote the torsion model for the homotopy category of rational circle-equivariant spectra from [16] to a Quillen equivalence. In addition, a close analysis of the one step case highlights important features needed for general torsion models which we will return to in future work.\",\"PeriodicalId\":50826,\"journal\":{\"name\":\"Algebraic and Geometric Topology\",\"volume\":\"118 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2020-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algebraic and Geometric Topology\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2140/agt.2022.22.2805\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebraic and Geometric Topology","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/agt.2022.22.2805","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

给定一个合适的稳定单轴模型范畴$\mathscr{C}$和它的Balmer谱的一个专门化闭子集$V$,可以得到一个Tate平方,将对象分解为$V$上支持的部分和$V^ C $上支持的与Tate对象拼接的部分。使用它可以表明$\mathscr{C}$是Quillen等价于由局部扭转对象数据构建的模型,并且拼接数据属于相当丰富的类别。作为应用,我们将有理圆等变谱同伦范畴的扭转模型从[16]提升到Quillen等价。此外,对单步情况的仔细分析突出了一般扭转模型所需的重要特征,我们将在未来的工作中回到这些特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Torsion models for tensor-triangulated categories: the one-step case
Given a suitable stable monoidal model category $\mathscr{C}$ and a specialization closed subset $V$ of its Balmer spectrum one can produce a Tate square for decomposing objects into the part supported over $V$ and the part supported over $V^c$ spliced with the Tate object. Using this one can show that $\mathscr{C}$ is Quillen equivalent to a model built from the data of local torsion objects, and the splicing data lies in a rather rich category. As an application, we promote the torsion model for the homotopy category of rational circle-equivariant spectra from [16] to a Quillen equivalence. In addition, a close analysis of the one step case highlights important features needed for general torsion models which we will return to in future work.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.10
自引率
14.30%
发文量
62
审稿时长
6-12 weeks
期刊介绍: Algebraic and Geometric Topology is a fully refereed journal covering all of topology, broadly understood.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信