偏度量空间中Ɓ-type收缩的不动点定理

Bijender Singh, V. Sihag, Anil Ahlawat
{"title":"偏度量空间中Ɓ-type收缩的不动点定理","authors":"Bijender Singh, V. Sihag, Anil Ahlawat","doi":"10.12723/mjs.60.3","DOIUrl":null,"url":null,"abstract":"The objective of this work is to study Ɓ-types of contraction mappings in the settings of partial metric space and establish fixed point results. As a result, a fixed point theorem has been established for a pair of Ɓ-type contraction mappings with a unique common fixed point. The study's main findings, in particular, expand and extend a fixed point theorem first proposed by Bijender et. al. in 2021.","PeriodicalId":18050,"journal":{"name":"Mapana Journal of Sciences","volume":"837 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fixed Point Theorem for Ɓ-type Contraction in Partial Metric Spaces\",\"authors\":\"Bijender Singh, V. Sihag, Anil Ahlawat\",\"doi\":\"10.12723/mjs.60.3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The objective of this work is to study Ɓ-types of contraction mappings in the settings of partial metric space and establish fixed point results. As a result, a fixed point theorem has been established for a pair of Ɓ-type contraction mappings with a unique common fixed point. The study's main findings, in particular, expand and extend a fixed point theorem first proposed by Bijender et. al. in 2021.\",\"PeriodicalId\":18050,\"journal\":{\"name\":\"Mapana Journal of Sciences\",\"volume\":\"837 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mapana Journal of Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12723/mjs.60.3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mapana Journal of Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12723/mjs.60.3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本工作的目的是研究在偏度量空间设置下Ɓ-types的收缩映射,并建立不动点结果。得到了具有唯一公共不动点的一对Ɓ-type收缩映射的不动点定理。该研究的主要发现,特别是扩展和扩展了Bijender等人于2021年首次提出的不动点定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fixed Point Theorem for Ɓ-type Contraction in Partial Metric Spaces
The objective of this work is to study Ɓ-types of contraction mappings in the settings of partial metric space and establish fixed point results. As a result, a fixed point theorem has been established for a pair of Ɓ-type contraction mappings with a unique common fixed point. The study's main findings, in particular, expand and extend a fixed point theorem first proposed by Bijender et. al. in 2021.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信