社会网络分析的贝叶斯计算算法

A. Caimo, Isabella Gollini
{"title":"社会网络分析的贝叶斯计算算法","authors":"A. Caimo, Isabella Gollini","doi":"10.1002/9783527694365.CH3","DOIUrl":null,"url":null,"abstract":"In this chapter we review some of the most recent computational advances in the rapidly expanding field of statistical social network analysis using the R open-source software. In particular we will focus on Bayesian estimation for two important families of models: exponential random graph models (ERGMs) and latent space models (LSMs).","PeriodicalId":8446,"journal":{"name":"arXiv: Computation","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2015-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Bayesian computational algorithms for social network analysis\",\"authors\":\"A. Caimo, Isabella Gollini\",\"doi\":\"10.1002/9783527694365.CH3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this chapter we review some of the most recent computational advances in the rapidly expanding field of statistical social network analysis using the R open-source software. In particular we will focus on Bayesian estimation for two important families of models: exponential random graph models (ERGMs) and latent space models (LSMs).\",\"PeriodicalId\":8446,\"journal\":{\"name\":\"arXiv: Computation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-04-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/9783527694365.CH3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/9783527694365.CH3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在本章中,我们将回顾使用R开源软件的统计社会网络分析领域中一些最新的计算进展。我们将特别关注两个重要模型族的贝叶斯估计:指数随机图模型(ergm)和潜在空间模型(lsm)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bayesian computational algorithms for social network analysis
In this chapter we review some of the most recent computational advances in the rapidly expanding field of statistical social network analysis using the R open-source software. In particular we will focus on Bayesian estimation for two important families of models: exponential random graph models (ERGMs) and latent space models (LSMs).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信