{"title":"社会网络分析的贝叶斯计算算法","authors":"A. Caimo, Isabella Gollini","doi":"10.1002/9783527694365.CH3","DOIUrl":null,"url":null,"abstract":"In this chapter we review some of the most recent computational advances in the rapidly expanding field of statistical social network analysis using the R open-source software. In particular we will focus on Bayesian estimation for two important families of models: exponential random graph models (ERGMs) and latent space models (LSMs).","PeriodicalId":8446,"journal":{"name":"arXiv: Computation","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2015-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Bayesian computational algorithms for social network analysis\",\"authors\":\"A. Caimo, Isabella Gollini\",\"doi\":\"10.1002/9783527694365.CH3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this chapter we review some of the most recent computational advances in the rapidly expanding field of statistical social network analysis using the R open-source software. In particular we will focus on Bayesian estimation for two important families of models: exponential random graph models (ERGMs) and latent space models (LSMs).\",\"PeriodicalId\":8446,\"journal\":{\"name\":\"arXiv: Computation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-04-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/9783527694365.CH3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/9783527694365.CH3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Bayesian computational algorithms for social network analysis
In this chapter we review some of the most recent computational advances in the rapidly expanding field of statistical social network analysis using the R open-source software. In particular we will focus on Bayesian estimation for two important families of models: exponential random graph models (ERGMs) and latent space models (LSMs).