粘性本构方程数值积分的超稳定时间离散格式

P. Royis
{"title":"粘性本构方程数值积分的超稳定时间离散格式","authors":"P. Royis","doi":"10.1002/(SICI)1099-1484(199807)3:3<229::AID-CFM48>3.0.CO;2-J","DOIUrl":null,"url":null,"abstract":"<p>The general framework of the paper deals with the finite element modelling of mechanical problems involving viscous materials such as bitumen or bituminous concrete. Its aim is to present a second-order-accurate discrete scheme which remains unconditionally superstable when used for the time discretization of the linear and non-linear viscoelastic constitutive equations considered. After stating the space- and time-continuous mechanical problem we focus on the time discretization of these equations, considering three different schemes. For both of them sufficiently small values of the time step are required in order to ensure the superstability, whereas the third remains unconditionally superstable. Eventually, some numerical results are presented. © 1998 John Wiley &amp; Sons, Ltd.</p>","PeriodicalId":100899,"journal":{"name":"Mechanics of Cohesive-frictional Materials","volume":"3 3","pages":"229-256"},"PeriodicalIF":0.0000,"publicationDate":"1999-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/(SICI)1099-1484(199807)3:3<229::AID-CFM48>3.0.CO;2-J","citationCount":"2","resultStr":"{\"title\":\"A superstable time-discrete scheme for the numerical integration of viscous constitutive equations\",\"authors\":\"P. Royis\",\"doi\":\"10.1002/(SICI)1099-1484(199807)3:3<229::AID-CFM48>3.0.CO;2-J\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The general framework of the paper deals with the finite element modelling of mechanical problems involving viscous materials such as bitumen or bituminous concrete. Its aim is to present a second-order-accurate discrete scheme which remains unconditionally superstable when used for the time discretization of the linear and non-linear viscoelastic constitutive equations considered. After stating the space- and time-continuous mechanical problem we focus on the time discretization of these equations, considering three different schemes. For both of them sufficiently small values of the time step are required in order to ensure the superstability, whereas the third remains unconditionally superstable. Eventually, some numerical results are presented. © 1998 John Wiley &amp; Sons, Ltd.</p>\",\"PeriodicalId\":100899,\"journal\":{\"name\":\"Mechanics of Cohesive-frictional Materials\",\"volume\":\"3 3\",\"pages\":\"229-256\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1002/(SICI)1099-1484(199807)3:3<229::AID-CFM48>3.0.CO;2-J\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mechanics of Cohesive-frictional Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/%28SICI%291099-1484%28199807%293%3A3%3C229%3A%3AAID-CFM48%3E3.0.CO%3B2-J\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanics of Cohesive-frictional Materials","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/%28SICI%291099-1484%28199807%293%3A3%3C229%3A%3AAID-CFM48%3E3.0.CO%3B2-J","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文的总体框架处理涉及粘性材料如沥青或沥青混凝土的力学问题的有限元建模。其目的是提出一种二阶精确的离散格式,当用于所考虑的线性和非线性粘弹性本构方程的时间离散化时,该格式保持无条件超稳定。在叙述了空间和时间连续力学问题之后,我们重点讨论了这些方程的时间离散化,考虑了三种不同的格式。它们都需要足够小的时间步长值以保证超稳定,而第三种则保持无条件的超稳定。最后给出了一些数值结果。©1998 John Wiley &儿子,有限公司
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A superstable time-discrete scheme for the numerical integration of viscous constitutive equations

The general framework of the paper deals with the finite element modelling of mechanical problems involving viscous materials such as bitumen or bituminous concrete. Its aim is to present a second-order-accurate discrete scheme which remains unconditionally superstable when used for the time discretization of the linear and non-linear viscoelastic constitutive equations considered. After stating the space- and time-continuous mechanical problem we focus on the time discretization of these equations, considering three different schemes. For both of them sufficiently small values of the time step are required in order to ensure the superstability, whereas the third remains unconditionally superstable. Eventually, some numerical results are presented. © 1998 John Wiley & Sons, Ltd.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信