忠实的fpga单精度浮点切线

M. Langhammer, B. Pasca
{"title":"忠实的fpga单精度浮点切线","authors":"M. Langhammer, B. Pasca","doi":"10.1145/2435264.2435274","DOIUrl":null,"url":null,"abstract":"This paper presents an FPGA-specific implementation of the floating-point tangent function. The implementation inputs values in the interval [-π/2,π/2], targets the IEEE-754 single-precision format and has an accuracy of 1 ulp. The proposed work is based on a combination of mathematical identities and properties of the tangent function in floating point. The architecture was designed having the {Stratix-IV} DSP and memory blocks in mind but should map well on any contemporary FPGA featuring embedded multiplier and memory blocks. It outperforms generic polynomial approximation targeting the same resource spectrum and provides better resources trade-offs than classical CORDIC-based implementations.The presented work is widely available as being part of the Altera DSP Builder Advanced Blockset.","PeriodicalId":87257,"journal":{"name":"FPGA. ACM International Symposium on Field-Programmable Gate Arrays","volume":"19 1","pages":"39-42"},"PeriodicalIF":0.0000,"publicationDate":"2013-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Faithful single-precision floating-point tangent for FPGAs\",\"authors\":\"M. Langhammer, B. Pasca\",\"doi\":\"10.1145/2435264.2435274\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an FPGA-specific implementation of the floating-point tangent function. The implementation inputs values in the interval [-π/2,π/2], targets the IEEE-754 single-precision format and has an accuracy of 1 ulp. The proposed work is based on a combination of mathematical identities and properties of the tangent function in floating point. The architecture was designed having the {Stratix-IV} DSP and memory blocks in mind but should map well on any contemporary FPGA featuring embedded multiplier and memory blocks. It outperforms generic polynomial approximation targeting the same resource spectrum and provides better resources trade-offs than classical CORDIC-based implementations.The presented work is widely available as being part of the Altera DSP Builder Advanced Blockset.\",\"PeriodicalId\":87257,\"journal\":{\"name\":\"FPGA. ACM International Symposium on Field-Programmable Gate Arrays\",\"volume\":\"19 1\",\"pages\":\"39-42\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-02-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"FPGA. ACM International Symposium on Field-Programmable Gate Arrays\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2435264.2435274\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"FPGA. ACM International Symposium on Field-Programmable Gate Arrays","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2435264.2435274","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文给出了浮点切线函数的fpga专用实现。该实现的输入值区间为[-π/2,π/2],以IEEE-754单精度格式为目标,精度为1 ulp。提出的工作是基于数学恒等式和正切函数的性质在浮点数相结合。该架构在设计时考虑了{Stratix-IV} DSP和内存块,但应该可以很好地映射到任何具有嵌入式乘法器和内存块的当代FPGA上。它优于针对相同资源谱的一般多项式近似,并提供比经典的基于cordic的实现更好的资源权衡。所提出的工作作为Altera DSP Builder高级块集的一部分广泛可用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Faithful single-precision floating-point tangent for FPGAs
This paper presents an FPGA-specific implementation of the floating-point tangent function. The implementation inputs values in the interval [-π/2,π/2], targets the IEEE-754 single-precision format and has an accuracy of 1 ulp. The proposed work is based on a combination of mathematical identities and properties of the tangent function in floating point. The architecture was designed having the {Stratix-IV} DSP and memory blocks in mind but should map well on any contemporary FPGA featuring embedded multiplier and memory blocks. It outperforms generic polynomial approximation targeting the same resource spectrum and provides better resources trade-offs than classical CORDIC-based implementations.The presented work is widely available as being part of the Altera DSP Builder Advanced Blockset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信