投影的线性分数族的投影定理

IF 0.6 3区 数学 Q3 MATHEMATICS
Annina Iseli, Anton Lukyanenko
{"title":"投影的线性分数族的投影定理","authors":"Annina Iseli, Anton Lukyanenko","doi":"10.1017/S0305004123000373","DOIUrl":null,"url":null,"abstract":"Abstract Marstrand’s theorem states that applying a generic rotation to a planar set A before projecting it orthogonally to the x-axis almost surely gives an image with the maximal possible dimension \n$\\min(1, \\dim A)$\n . We first prove, using the transversality theory of Peres–Schlag locally, that the same result holds when applying a generic complex linear-fractional transformation in \n$PSL(2,\\mathbb{C})$\n or a generic real linear-fractional transformation in \n$PGL(3,\\mathbb{R})$\n . We next show that, under some necessary technical assumptions, transversality locally holds for restricted families of projections corresponding to one-dimensional subgroups of \n$PSL(2,\\mathbb{C})$\n or \n$PGL(3,\\mathbb{R})$\n . Third, we demonstrate, in any dimension, local transversality and resulting projection statements for the families of closest-point projections to totally-geodesic subspaces of hyperbolic and spherical geometries.","PeriodicalId":18320,"journal":{"name":"Mathematical Proceedings of the Cambridge Philosophical Society","volume":"25 1","pages":"625 - 647"},"PeriodicalIF":0.6000,"publicationDate":"2021-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Projection theorems for linear-fractional families of projections\",\"authors\":\"Annina Iseli, Anton Lukyanenko\",\"doi\":\"10.1017/S0305004123000373\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Marstrand’s theorem states that applying a generic rotation to a planar set A before projecting it orthogonally to the x-axis almost surely gives an image with the maximal possible dimension \\n$\\\\min(1, \\\\dim A)$\\n . We first prove, using the transversality theory of Peres–Schlag locally, that the same result holds when applying a generic complex linear-fractional transformation in \\n$PSL(2,\\\\mathbb{C})$\\n or a generic real linear-fractional transformation in \\n$PGL(3,\\\\mathbb{R})$\\n . We next show that, under some necessary technical assumptions, transversality locally holds for restricted families of projections corresponding to one-dimensional subgroups of \\n$PSL(2,\\\\mathbb{C})$\\n or \\n$PGL(3,\\\\mathbb{R})$\\n . Third, we demonstrate, in any dimension, local transversality and resulting projection statements for the families of closest-point projections to totally-geodesic subspaces of hyperbolic and spherical geometries.\",\"PeriodicalId\":18320,\"journal\":{\"name\":\"Mathematical Proceedings of the Cambridge Philosophical Society\",\"volume\":\"25 1\",\"pages\":\"625 - 647\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2021-12-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Proceedings of the Cambridge Philosophical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/S0305004123000373\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Proceedings of the Cambridge Philosophical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/S0305004123000373","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

Marstrand定理指出,在平面集合a与x轴正交投影之前,对其进行一般旋转,几乎肯定会得到具有最大可能维数$\min(1, \dim a)$的图像。我们首先利用Peres-Schlag的局部横向性理论,证明了在$PSL(2,\mathbb{C})$中应用一般复线性分数变换或在$PGL(3,\mathbb{R})$中应用一般实线性分数变换具有相同的结果。我们接下来证明,在一些必要的技术假设下,对于$PSL(2,\mathbb{C})$或$PGL(3,\mathbb{R})$的一维子群所对应的有限投影族,横向性局部成立。第三,我们证明了双曲几何和球面几何的全测地线子空间的最近点投影族在任何维上的局部截线性和由此产生的投影命题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Projection theorems for linear-fractional families of projections
Abstract Marstrand’s theorem states that applying a generic rotation to a planar set A before projecting it orthogonally to the x-axis almost surely gives an image with the maximal possible dimension $\min(1, \dim A)$ . We first prove, using the transversality theory of Peres–Schlag locally, that the same result holds when applying a generic complex linear-fractional transformation in $PSL(2,\mathbb{C})$ or a generic real linear-fractional transformation in $PGL(3,\mathbb{R})$ . We next show that, under some necessary technical assumptions, transversality locally holds for restricted families of projections corresponding to one-dimensional subgroups of $PSL(2,\mathbb{C})$ or $PGL(3,\mathbb{R})$ . Third, we demonstrate, in any dimension, local transversality and resulting projection statements for the families of closest-point projections to totally-geodesic subspaces of hyperbolic and spherical geometries.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
39
审稿时长
6-12 weeks
期刊介绍: Papers which advance knowledge of mathematics, either pure or applied, will be considered by the Editorial Committee. The work must be original and not submitted to another journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信