关于Jack多项式的Schur展开的一些猜想

IF 0.4 Q4 MATHEMATICS, APPLIED
P. Alexandersson, J. Haglund, George Wang
{"title":"关于Jack多项式的Schur展开的一些猜想","authors":"P. Alexandersson, J. Haglund, George Wang","doi":"10.4310/joc.2021.v12.n2.a2","DOIUrl":null,"url":null,"abstract":"We present positivity conjectures for the Schur expansion of Jack symmetric functions in two bases given by binomial coefficients. Partial results suggest that there are rich combinatorics to be found in these bases, including Eulerian numbers, Stirling numbers, quasi-Yamanouchi tableaux, and rook boards. These results also lead to further conjectures about the fundamental quasisymmetric expansions of these bases, which we prove for special cases.","PeriodicalId":44683,"journal":{"name":"Journal of Combinatorics","volume":"49 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2018-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Some conjectures on the Schur expansion of Jack polynomials\",\"authors\":\"P. Alexandersson, J. Haglund, George Wang\",\"doi\":\"10.4310/joc.2021.v12.n2.a2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present positivity conjectures for the Schur expansion of Jack symmetric functions in two bases given by binomial coefficients. Partial results suggest that there are rich combinatorics to be found in these bases, including Eulerian numbers, Stirling numbers, quasi-Yamanouchi tableaux, and rook boards. These results also lead to further conjectures about the fundamental quasisymmetric expansions of these bases, which we prove for special cases.\",\"PeriodicalId\":44683,\"journal\":{\"name\":\"Journal of Combinatorics\",\"volume\":\"49 1\",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2018-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4310/joc.2021.v12.n2.a2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4310/joc.2021.v12.n2.a2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 2

摘要

给出了二项式系数给出的两基中Jack对称函数的Schur展开式的正猜想。部分结果表明,在这些基中存在丰富的组合,包括欧拉数、斯特林数、拟山内图和车棋盘。这些结果还导致了关于这些基的基本准对称展开的进一步猜想,我们在特殊情况下证明了这些猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Some conjectures on the Schur expansion of Jack polynomials
We present positivity conjectures for the Schur expansion of Jack symmetric functions in two bases given by binomial coefficients. Partial results suggest that there are rich combinatorics to be found in these bases, including Eulerian numbers, Stirling numbers, quasi-Yamanouchi tableaux, and rook boards. These results also lead to further conjectures about the fundamental quasisymmetric expansions of these bases, which we prove for special cases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Combinatorics
Journal of Combinatorics MATHEMATICS, APPLIED-
自引率
0.00%
发文量
21
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信