对“关于黎曼流形的BMO和Carleson测度”的再思考

IF 1.3 3区 数学 Q1 MATHEMATICS
Bo Li, Jinxia Li, Qingze Lin, Bolin Ma, Tianjun Shen
{"title":"对“关于黎曼流形的BMO和Carleson测度”的再思考","authors":"Bo Li, Jinxia Li, Qingze Lin, Bolin Ma, Tianjun Shen","doi":"10.1017/prm.2023.58","DOIUrl":null,"url":null,"abstract":"Let $\\mathcal {M}$ be an Ahlfors $n$ -regular Riemannian manifold such that either the Ricci curvature is non-negative or the Ricci curvature is bounded from below together with a bound on the gradient of the heat kernel. In the paper [IMRN, 2022, no. 2, 1245-1269] of Brazke–Schikorra–Sire, the authors characterised the BMO function $u : \\mathcal {M} \\to \\mathbb {R}$ by a Carleson measure condition of its $\\sigma$ -harmonic extension $U:\\mathcal {M}\\times \\mathbb {R}_+ \\to \\mathbb {R}$ . This paper is concerned with the similar problem under a more general Dirichlet metric measure space setting, and the limiting behaviours of BMO & Carleson measure, where the heat kernel admits only the so-called diagonal upper estimate. More significantly, without the Ricci curvature condition, we relax the Ahlfors regularity to a doubling property, and remove the pointwise bound on the gradient of the heat kernel. Some similar results for the Lipschitz function are also given, and two open problems related to our main result are considered.","PeriodicalId":54560,"journal":{"name":"Proceedings of the Royal Society of Edinburgh Section A-Mathematics","volume":"2 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2023-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A revisit to “On BMO and Carleson measures on Riemannian manifolds”\",\"authors\":\"Bo Li, Jinxia Li, Qingze Lin, Bolin Ma, Tianjun Shen\",\"doi\":\"10.1017/prm.2023.58\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $\\\\mathcal {M}$ be an Ahlfors $n$ -regular Riemannian manifold such that either the Ricci curvature is non-negative or the Ricci curvature is bounded from below together with a bound on the gradient of the heat kernel. In the paper [IMRN, 2022, no. 2, 1245-1269] of Brazke–Schikorra–Sire, the authors characterised the BMO function $u : \\\\mathcal {M} \\\\to \\\\mathbb {R}$ by a Carleson measure condition of its $\\\\sigma$ -harmonic extension $U:\\\\mathcal {M}\\\\times \\\\mathbb {R}_+ \\\\to \\\\mathbb {R}$ . This paper is concerned with the similar problem under a more general Dirichlet metric measure space setting, and the limiting behaviours of BMO & Carleson measure, where the heat kernel admits only the so-called diagonal upper estimate. More significantly, without the Ricci curvature condition, we relax the Ahlfors regularity to a doubling property, and remove the pointwise bound on the gradient of the heat kernel. Some similar results for the Lipschitz function are also given, and two open problems related to our main result are considered.\",\"PeriodicalId\":54560,\"journal\":{\"name\":\"Proceedings of the Royal Society of Edinburgh Section A-Mathematics\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Royal Society of Edinburgh Section A-Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/prm.2023.58\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Royal Society of Edinburgh Section A-Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/prm.2023.58","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

设$\mathcal {M}$是一个Ahlfors $n$ -正则黎曼流形,使得里奇曲率是非负的,或者里奇曲率与热核梯度上的界一起从下有界。论文[IMRN, 2022, no. 6]在Brazke-Schikorra-Sire的论文[2](1245-1269)中,作者利用BMO函数$\sigma$ -谐扩展$u:\mathcal {M} $乘以\mathbb {R}_+ \到\mathbb {R}$的Carleson测度条件刻画了BMO函数$u:\mathcal {M} $到\mathbb {R}$。本文讨论了在更一般的Dirichlet度量空间下的类似问题,以及热核只允许所谓对角上估计的BMO和Carleson测度的极限行为。更重要的是,在没有Ricci曲率条件的情况下,我们将Ahlfors正则性放宽为加倍性质,并消除了热核梯度上的点向边界。对于Lipschitz函数也给出了一些类似的结果,并考虑了与我们的主要结果相关的两个开放问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A revisit to “On BMO and Carleson measures on Riemannian manifolds”
Let $\mathcal {M}$ be an Ahlfors $n$ -regular Riemannian manifold such that either the Ricci curvature is non-negative or the Ricci curvature is bounded from below together with a bound on the gradient of the heat kernel. In the paper [IMRN, 2022, no. 2, 1245-1269] of Brazke–Schikorra–Sire, the authors characterised the BMO function $u : \mathcal {M} \to \mathbb {R}$ by a Carleson measure condition of its $\sigma$ -harmonic extension $U:\mathcal {M}\times \mathbb {R}_+ \to \mathbb {R}$ . This paper is concerned with the similar problem under a more general Dirichlet metric measure space setting, and the limiting behaviours of BMO & Carleson measure, where the heat kernel admits only the so-called diagonal upper estimate. More significantly, without the Ricci curvature condition, we relax the Ahlfors regularity to a doubling property, and remove the pointwise bound on the gradient of the heat kernel. Some similar results for the Lipschitz function are also given, and two open problems related to our main result are considered.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.00
自引率
0.00%
发文量
72
审稿时长
6-12 weeks
期刊介绍: A flagship publication of The Royal Society of Edinburgh, Proceedings A is a prestigious, general mathematics journal publishing peer-reviewed papers of international standard across the whole spectrum of mathematics, but with the emphasis on applied analysis and differential equations. An international journal, publishing six issues per year, Proceedings A has been publishing the highest-quality mathematical research since 1884. Recent issues have included a wealth of key contributors and considered research papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信