振动驱动的惯性波和球壳中的平均纬向流

IF 1.1 4区 地球科学 Q3 ASTRONOMY & ASTROPHYSICS
Yufeng Lin, J. Noir
{"title":"振动驱动的惯性波和球壳中的平均纬向流","authors":"Yufeng Lin, J. Noir","doi":"10.1080/03091929.2020.1761350","DOIUrl":null,"url":null,"abstract":"Several planetary bodies in our solar system undergo a forced libration owing to gravitational interactions with their orbital companions, leading to complex fluid motions in their metallic liquid cores or subsurface oceans. In this study, we numerically investigate flows in longitudinally librating spherical shells. We focus on the Ekman number dependencies of several shear layers when the libration frequency is less than twice of the rotation frequency and the libration amplitude is small. Time-dependent flows mainly consist of inertial waves excited at the critical latitudes due to the Ekman pumping singularities, forming conical shear layers. In particular, previous theoretical studies have proposed different scalings for the conical shear layers spawned from the critical latitudes at the inner boundary. Our numerical results favour the velocity amplitude scaling predicted by Le Dizès & Le Bars (J. Fluid Mech. 2017, 826, 653) over the scaling initially proposed by Kerswell (J. Fluid Mech. 1995, 298, 311), though the Ekman numbers in our calculations are not sufficiently small to pin down this scaling. Non-linear interactions in the boundary layers drive a mean zonal flow with several geostrophic shears. Our numerical results show that geostrophic shears associated with the critical latitudes at the inner and outer boundaries exhibit the same scalings, i.e. an amplitude of over a width of . Apart from the geostrophic shear associated with the critical latitude, our numerical results show that the reflection of inertial waves can induce a geostrophic shear with an amplitude of over a width of . As the amplitude of the geostrophic shears increases as reducing the Ekman number, the geostrophic shears in the mean flows may be significant in planetary cores and subsurface oceans given small Ekman numbers of these systems.","PeriodicalId":56132,"journal":{"name":"Geophysical and Astrophysical Fluid Dynamics","volume":"1 1","pages":"258 - 279"},"PeriodicalIF":1.1000,"publicationDate":"2020-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Libration-driven inertial waves and mean zonal flows in spherical shells\",\"authors\":\"Yufeng Lin, J. Noir\",\"doi\":\"10.1080/03091929.2020.1761350\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Several planetary bodies in our solar system undergo a forced libration owing to gravitational interactions with their orbital companions, leading to complex fluid motions in their metallic liquid cores or subsurface oceans. In this study, we numerically investigate flows in longitudinally librating spherical shells. We focus on the Ekman number dependencies of several shear layers when the libration frequency is less than twice of the rotation frequency and the libration amplitude is small. Time-dependent flows mainly consist of inertial waves excited at the critical latitudes due to the Ekman pumping singularities, forming conical shear layers. In particular, previous theoretical studies have proposed different scalings for the conical shear layers spawned from the critical latitudes at the inner boundary. Our numerical results favour the velocity amplitude scaling predicted by Le Dizès & Le Bars (J. Fluid Mech. 2017, 826, 653) over the scaling initially proposed by Kerswell (J. Fluid Mech. 1995, 298, 311), though the Ekman numbers in our calculations are not sufficiently small to pin down this scaling. Non-linear interactions in the boundary layers drive a mean zonal flow with several geostrophic shears. Our numerical results show that geostrophic shears associated with the critical latitudes at the inner and outer boundaries exhibit the same scalings, i.e. an amplitude of over a width of . Apart from the geostrophic shear associated with the critical latitude, our numerical results show that the reflection of inertial waves can induce a geostrophic shear with an amplitude of over a width of . As the amplitude of the geostrophic shears increases as reducing the Ekman number, the geostrophic shears in the mean flows may be significant in planetary cores and subsurface oceans given small Ekman numbers of these systems.\",\"PeriodicalId\":56132,\"journal\":{\"name\":\"Geophysical and Astrophysical Fluid Dynamics\",\"volume\":\"1 1\",\"pages\":\"258 - 279\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2020-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geophysical and Astrophysical Fluid Dynamics\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1080/03091929.2020.1761350\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysical and Astrophysical Fluid Dynamics","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1080/03091929.2020.1761350","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 16

摘要

我们太阳系中的几个行星体由于与其轨道同伴的引力相互作用而经历了强制振动,导致其金属液体核心或地下海洋中的复杂流体运动。在这项研究中,我们对纵向振动球壳中的流动进行了数值研究。重点研究了当振动频率小于旋转频率的2倍,且振动幅值较小时,剪切层的Ekman数依赖关系。时变流动主要由在临界纬度处受Ekman抽运奇点激发的惯性波组成,形成锥形剪切层。特别是,以往的理论研究对内边界临界纬度产生的锥形剪切层提出了不同的标度。我们的数值结果更倾向于Le diz和Le Bars (J. Fluid Mech. 2017,826,653)预测的速度振幅缩放,而不是Kerswell (J. Fluid Mech. 1995,298,311)最初提出的缩放,尽管我们计算中的Ekman数不够小,无法确定这种缩放。边界层的非线性相互作用驱动了一个带着几个地转剪切的平均纬向流。我们的数值结果表明,与内外边界临界纬度相关的地转剪切表现出相同的标度,即超过宽度的振幅。除了与临界纬度相关的地转切变外,我们的数值结果表明,惯性波的反射可以诱发振幅超过宽度的地转切变。当地转剪切的振幅随着Ekman数的减小而增大时,由于这些系统的Ekman数较小,平均流中的地转剪切可能是显著的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Libration-driven inertial waves and mean zonal flows in spherical shells
Several planetary bodies in our solar system undergo a forced libration owing to gravitational interactions with their orbital companions, leading to complex fluid motions in their metallic liquid cores or subsurface oceans. In this study, we numerically investigate flows in longitudinally librating spherical shells. We focus on the Ekman number dependencies of several shear layers when the libration frequency is less than twice of the rotation frequency and the libration amplitude is small. Time-dependent flows mainly consist of inertial waves excited at the critical latitudes due to the Ekman pumping singularities, forming conical shear layers. In particular, previous theoretical studies have proposed different scalings for the conical shear layers spawned from the critical latitudes at the inner boundary. Our numerical results favour the velocity amplitude scaling predicted by Le Dizès & Le Bars (J. Fluid Mech. 2017, 826, 653) over the scaling initially proposed by Kerswell (J. Fluid Mech. 1995, 298, 311), though the Ekman numbers in our calculations are not sufficiently small to pin down this scaling. Non-linear interactions in the boundary layers drive a mean zonal flow with several geostrophic shears. Our numerical results show that geostrophic shears associated with the critical latitudes at the inner and outer boundaries exhibit the same scalings, i.e. an amplitude of over a width of . Apart from the geostrophic shear associated with the critical latitude, our numerical results show that the reflection of inertial waves can induce a geostrophic shear with an amplitude of over a width of . As the amplitude of the geostrophic shears increases as reducing the Ekman number, the geostrophic shears in the mean flows may be significant in planetary cores and subsurface oceans given small Ekman numbers of these systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geophysical and Astrophysical Fluid Dynamics
Geophysical and Astrophysical Fluid Dynamics 地学天文-地球化学与地球物理
CiteScore
3.10
自引率
0.00%
发文量
14
审稿时长
>12 weeks
期刊介绍: Geophysical and Astrophysical Fluid Dynamics exists for the publication of original research papers and short communications, occasional survey articles and conference reports on the fluid mechanics of the earth and planets, including oceans, atmospheres and interiors, and the fluid mechanics of the sun, stars and other astrophysical objects. In addition, their magnetohydrodynamic behaviours are investigated. Experimental, theoretical and numerical studies of rotating, stratified and convecting fluids of general interest to geophysicists and astrophysicists appear. Properly interpreted observational results are also published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信