一些经典和非经典命题证明系统的非单调性质

A. Chubaryan, A. Hambardzumyan
{"title":"一些经典和非经典命题证明系统的非单调性质","authors":"A. Chubaryan, A. Hambardzumyan","doi":"10.46991/pysu:a/2020.54.3.127","DOIUrl":null,"url":null,"abstract":"We investigate the relations between the proof lines of non-minimal tautologies and its minimal tautologies for the Frege systems, the sequent systems with cut rule and the systems of natural deductions of classical and nonclassical logics. We show that for these systems there are sequences of tautologies ψn, every one of which has unique minimal tautologies φn such that for each n the minimal proof lines of φn are an order more than the minimal proof lines of ψn.","PeriodicalId":21146,"journal":{"name":"Proceedings of the YSU A: Physical and Mathematical Sciences","volume":"161 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ON NON-MONOTONOUS PROPERTIES OF SOME CLASSICAL AND NONCLASSICAL PROPOSITIONAL PROOF SYSTEMS\",\"authors\":\"A. Chubaryan, A. Hambardzumyan\",\"doi\":\"10.46991/pysu:a/2020.54.3.127\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate the relations between the proof lines of non-minimal tautologies and its minimal tautologies for the Frege systems, the sequent systems with cut rule and the systems of natural deductions of classical and nonclassical logics. We show that for these systems there are sequences of tautologies ψn, every one of which has unique minimal tautologies φn such that for each n the minimal proof lines of φn are an order more than the minimal proof lines of ψn.\",\"PeriodicalId\":21146,\"journal\":{\"name\":\"Proceedings of the YSU A: Physical and Mathematical Sciences\",\"volume\":\"161 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the YSU A: Physical and Mathematical Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46991/pysu:a/2020.54.3.127\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the YSU A: Physical and Mathematical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46991/pysu:a/2020.54.3.127","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究了经典逻辑和非经典逻辑的Frege系统、带切割规则的相继系统和自然演绎系统的非极小重言式及其极小重言式的证明线之间的关系。我们证明了对于这些系统存在重言式序列ψn,其中每一个重言式序列都有唯一的最小重言式φn,使得对于每一个n, φn的最小证明线比ψn的最小证明线多一个阶。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ON NON-MONOTONOUS PROPERTIES OF SOME CLASSICAL AND NONCLASSICAL PROPOSITIONAL PROOF SYSTEMS
We investigate the relations between the proof lines of non-minimal tautologies and its minimal tautologies for the Frege systems, the sequent systems with cut rule and the systems of natural deductions of classical and nonclassical logics. We show that for these systems there are sequences of tautologies ψn, every one of which has unique minimal tautologies φn such that for each n the minimal proof lines of φn are an order more than the minimal proof lines of ψn.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信