{"title":"一些经典和非经典命题证明系统的非单调性质","authors":"A. Chubaryan, A. Hambardzumyan","doi":"10.46991/pysu:a/2020.54.3.127","DOIUrl":null,"url":null,"abstract":"We investigate the relations between the proof lines of non-minimal tautologies and its minimal tautologies for the Frege systems, the sequent systems with cut rule and the systems of natural deductions of classical and nonclassical logics. We show that for these systems there are sequences of tautologies ψn, every one of which has unique minimal tautologies φn such that for each n the minimal proof lines of φn are an order more than the minimal proof lines of ψn.","PeriodicalId":21146,"journal":{"name":"Proceedings of the YSU A: Physical and Mathematical Sciences","volume":"161 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ON NON-MONOTONOUS PROPERTIES OF SOME CLASSICAL AND NONCLASSICAL PROPOSITIONAL PROOF SYSTEMS\",\"authors\":\"A. Chubaryan, A. Hambardzumyan\",\"doi\":\"10.46991/pysu:a/2020.54.3.127\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate the relations between the proof lines of non-minimal tautologies and its minimal tautologies for the Frege systems, the sequent systems with cut rule and the systems of natural deductions of classical and nonclassical logics. We show that for these systems there are sequences of tautologies ψn, every one of which has unique minimal tautologies φn such that for each n the minimal proof lines of φn are an order more than the minimal proof lines of ψn.\",\"PeriodicalId\":21146,\"journal\":{\"name\":\"Proceedings of the YSU A: Physical and Mathematical Sciences\",\"volume\":\"161 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the YSU A: Physical and Mathematical Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46991/pysu:a/2020.54.3.127\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the YSU A: Physical and Mathematical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46991/pysu:a/2020.54.3.127","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
ON NON-MONOTONOUS PROPERTIES OF SOME CLASSICAL AND NONCLASSICAL PROPOSITIONAL PROOF SYSTEMS
We investigate the relations between the proof lines of non-minimal tautologies and its minimal tautologies for the Frege systems, the sequent systems with cut rule and the systems of natural deductions of classical and nonclassical logics. We show that for these systems there are sequences of tautologies ψn, every one of which has unique minimal tautologies φn such that for each n the minimal proof lines of φn are an order more than the minimal proof lines of ψn.