{"title":"局部随机组","authors":"Keivan Mallahi-Karai, A. Mohammadi, A. Golsefidy","doi":"10.1307/mmj/20217213","DOIUrl":null,"url":null,"abstract":"In this work, we will introduce and study the notion of local randomness for compact metric groups. We prove a mixing inequality as well as a product result for locally random groups under an additional dimension condition on the volume of small balls and provide several examples of such groups. In particular, this leads to new examples of groups satisfying such a mixing inequality. In the same context, we will develop a Littlewood-Paley decomposition and explore its connection to the existence of the spectral gap for random walks. Moreover, under the dimension condition alone, we will prove a multi-scale entropy gain result `a la Bourgain-Gamburd and Tao.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Locally Random Groups\",\"authors\":\"Keivan Mallahi-Karai, A. Mohammadi, A. Golsefidy\",\"doi\":\"10.1307/mmj/20217213\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we will introduce and study the notion of local randomness for compact metric groups. We prove a mixing inequality as well as a product result for locally random groups under an additional dimension condition on the volume of small balls and provide several examples of such groups. In particular, this leads to new examples of groups satisfying such a mixing inequality. In the same context, we will develop a Littlewood-Paley decomposition and explore its connection to the existence of the spectral gap for random walks. Moreover, under the dimension condition alone, we will prove a multi-scale entropy gain result `a la Bourgain-Gamburd and Tao.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2020-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1307/mmj/20217213\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1307/mmj/20217213","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
In this work, we will introduce and study the notion of local randomness for compact metric groups. We prove a mixing inequality as well as a product result for locally random groups under an additional dimension condition on the volume of small balls and provide several examples of such groups. In particular, this leads to new examples of groups satisfying such a mixing inequality. In the same context, we will develop a Littlewood-Paley decomposition and explore its connection to the existence of the spectral gap for random walks. Moreover, under the dimension condition alone, we will prove a multi-scale entropy gain result `a la Bourgain-Gamburd and Tao.