新型GaAs0.71P0.29/Si串联阶跃电池设计

S. Abdul Hadi, E. Polyzoeva, Tim Milakovich, M. Bulsara, J. Hoyt, E. Fitzgerald, A. Nayfeh
{"title":"新型GaAs0.71P0.29/Si串联阶跃电池设计","authors":"S. Abdul Hadi, E. Polyzoeva, Tim Milakovich, M. Bulsara, J. Hoyt, E. Fitzgerald, A. Nayfeh","doi":"10.1109/PVSC.2014.6925114","DOIUrl":null,"url":null,"abstract":"A novel GaAs0.71P0.29/Si tandem cell is proposed and simulated. In order to grow GaAs0.71P0.29 layers on Si, Si1-yGey (SiGe) buffer layers can be used but optical losses are expected. To reduce large optical losses a wafer bonded/layer transferred structure can be used that eliminates the SiGe buffer layer. In this work we propose a novel tandem step-cell design that partially exposes the underlying Si cell for both wafer bonded and SiGe based cells. We demonstrate by experiment and simulation mitigation of the optical losses associated with SiGe buffer layers. For an optimized GaAs0.71P0.29/Si tandem cell without the step cell design, simulations estimate ~20% efficiency for the bonded structure and ~3% for the as grown structure with a SiGe buffer. With the proposed novel step-cell design, optimum efficiency of bonded structure increases to ~32% while for structures with SiGe the simulated efficiency reaches ~23%. Optimum exposure of bottom cell area increases with increasing thickness and lifetime of layers above the bottom Si cell.","PeriodicalId":6649,"journal":{"name":"2014 IEEE 40th Photovoltaic Specialist Conference (PVSC)","volume":"34 1","pages":"1127-1131"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Novel GaAs0.71P0.29/Si tandem step-cell design\",\"authors\":\"S. Abdul Hadi, E. Polyzoeva, Tim Milakovich, M. Bulsara, J. Hoyt, E. Fitzgerald, A. Nayfeh\",\"doi\":\"10.1109/PVSC.2014.6925114\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A novel GaAs0.71P0.29/Si tandem cell is proposed and simulated. In order to grow GaAs0.71P0.29 layers on Si, Si1-yGey (SiGe) buffer layers can be used but optical losses are expected. To reduce large optical losses a wafer bonded/layer transferred structure can be used that eliminates the SiGe buffer layer. In this work we propose a novel tandem step-cell design that partially exposes the underlying Si cell for both wafer bonded and SiGe based cells. We demonstrate by experiment and simulation mitigation of the optical losses associated with SiGe buffer layers. For an optimized GaAs0.71P0.29/Si tandem cell without the step cell design, simulations estimate ~20% efficiency for the bonded structure and ~3% for the as grown structure with a SiGe buffer. With the proposed novel step-cell design, optimum efficiency of bonded structure increases to ~32% while for structures with SiGe the simulated efficiency reaches ~23%. Optimum exposure of bottom cell area increases with increasing thickness and lifetime of layers above the bottom Si cell.\",\"PeriodicalId\":6649,\"journal\":{\"name\":\"2014 IEEE 40th Photovoltaic Specialist Conference (PVSC)\",\"volume\":\"34 1\",\"pages\":\"1127-1131\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE 40th Photovoltaic Specialist Conference (PVSC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PVSC.2014.6925114\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 40th Photovoltaic Specialist Conference (PVSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PVSC.2014.6925114","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

提出并模拟了一种新型的GaAs0.71P0.29/Si串联电池。为了在Si上生长GaAs0.71P0.29层,可以使用Si1-yGey (SiGe)缓冲层,但预计会有光学损耗。为了减少大量的光学损耗,可以使用晶圆键合/层转移结构,消除SiGe缓冲层。在这项工作中,我们提出了一种新的串联阶跃电池设计,该设计部分暴露了晶圆键合和SiGe基电池的底层硅电池。我们通过实验和模拟证明了与SiGe缓冲层相关的光学损耗的缓解。对于没有阶跃电池设计的优化的GaAs0.71P0.29/Si串联电池,模拟估计键合结构的效率为~20%,带SiGe缓冲的生长结构的效率为~3%。采用新的阶梯电池设计,键合结构的最佳效率提高到~32%,而SiGe结构的模拟效率达到~23%。底部硅电池的最佳暴露面积随着底部硅电池以上层的厚度和寿命的增加而增加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Novel GaAs0.71P0.29/Si tandem step-cell design
A novel GaAs0.71P0.29/Si tandem cell is proposed and simulated. In order to grow GaAs0.71P0.29 layers on Si, Si1-yGey (SiGe) buffer layers can be used but optical losses are expected. To reduce large optical losses a wafer bonded/layer transferred structure can be used that eliminates the SiGe buffer layer. In this work we propose a novel tandem step-cell design that partially exposes the underlying Si cell for both wafer bonded and SiGe based cells. We demonstrate by experiment and simulation mitigation of the optical losses associated with SiGe buffer layers. For an optimized GaAs0.71P0.29/Si tandem cell without the step cell design, simulations estimate ~20% efficiency for the bonded structure and ~3% for the as grown structure with a SiGe buffer. With the proposed novel step-cell design, optimum efficiency of bonded structure increases to ~32% while for structures with SiGe the simulated efficiency reaches ~23%. Optimum exposure of bottom cell area increases with increasing thickness and lifetime of layers above the bottom Si cell.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信