{"title":"中\\({\\boldsymbol{C^3}}\\)紧可定向曲面的合集的完全\\({\\boldsymbol{SE(3)}}\\)不变量 \\(\\mathbb{R}^{\\boldsymbol{3}}\\)","authors":"Yair Hayut, D. Lehavi","doi":"10.1137/21M1445776","DOIUrl":null,"url":null,"abstract":"We introduce invariants for compact $C^1$-orientable surfaces (with boundary) in $\\mathbb{R}^3$ up to rigid transformations. Our invariants are certain degree four polynomials in the moments of the delta function of the surface. We give an effective and numerically stable inversion algorithm for retrieving the surface from the invariants, which works on a comeagre subset of $C^3$-surfaces.","PeriodicalId":48489,"journal":{"name":"SIAM Journal on Applied Algebra and Geometry","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2021-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Complete \\\\({\\\\boldsymbol{SE(3)}}\\\\) Invariants for a Comeagre Set of \\\\({\\\\boldsymbol{C^3}}\\\\) Compact Orientable Surfaces in \\\\(\\\\mathbb{R}^{\\\\boldsymbol{3}}\\\\)\",\"authors\":\"Yair Hayut, D. Lehavi\",\"doi\":\"10.1137/21M1445776\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce invariants for compact $C^1$-orientable surfaces (with boundary) in $\\\\mathbb{R}^3$ up to rigid transformations. Our invariants are certain degree four polynomials in the moments of the delta function of the surface. We give an effective and numerically stable inversion algorithm for retrieving the surface from the invariants, which works on a comeagre subset of $C^3$-surfaces.\",\"PeriodicalId\":48489,\"journal\":{\"name\":\"SIAM Journal on Applied Algebra and Geometry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2021-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM Journal on Applied Algebra and Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/21M1445776\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Applied Algebra and Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/21M1445776","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Complete \({\boldsymbol{SE(3)}}\) Invariants for a Comeagre Set of \({\boldsymbol{C^3}}\) Compact Orientable Surfaces in \(\mathbb{R}^{\boldsymbol{3}}\)
We introduce invariants for compact $C^1$-orientable surfaces (with boundary) in $\mathbb{R}^3$ up to rigid transformations. Our invariants are certain degree four polynomials in the moments of the delta function of the surface. We give an effective and numerically stable inversion algorithm for retrieving the surface from the invariants, which works on a comeagre subset of $C^3$-surfaces.