{"title":"网络环境下和MPP跟踪过程中PMSG风电系统的控制","authors":"Y. Errami, A. Obbadi, S. Sahnoun","doi":"10.1504/ijscc.2020.10027725","DOIUrl":null,"url":null,"abstract":"This study presents a control strategy for grid-connected WES based on a permanent magnet synchronous generator (PMSG). The power system comprises five PMSG-based 2 MW which connected to the dc-bus with rectifiers, whereas the grid-side inverter is connected to the power grid throughout a grid-side filter. The objectives of grid-side inverter are to deliver the energy from the PMSGs side to the power grid, to regulate the dc-bus and to achieve unity power factor (UPF). The generator side converters are employed to control the velocities of the PMSGs with maximum power point tracking algorithm. Moreover, a pitch control algorithm is used. The proposed vector control technique (VCT) is able to fully decouple the quadrature (q) and direct (d) components of the currents. Simulations results using MATLAB/Simulink software are presented to validate the proposed control scheme for fault conditions into the grid as well as for normal working conditions.","PeriodicalId":38610,"journal":{"name":"International Journal of Systems, Control and Communications","volume":"19 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Control of PMSG wind electrical system in network context and during the MPP tracking process\",\"authors\":\"Y. Errami, A. Obbadi, S. Sahnoun\",\"doi\":\"10.1504/ijscc.2020.10027725\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study presents a control strategy for grid-connected WES based on a permanent magnet synchronous generator (PMSG). The power system comprises five PMSG-based 2 MW which connected to the dc-bus with rectifiers, whereas the grid-side inverter is connected to the power grid throughout a grid-side filter. The objectives of grid-side inverter are to deliver the energy from the PMSGs side to the power grid, to regulate the dc-bus and to achieve unity power factor (UPF). The generator side converters are employed to control the velocities of the PMSGs with maximum power point tracking algorithm. Moreover, a pitch control algorithm is used. The proposed vector control technique (VCT) is able to fully decouple the quadrature (q) and direct (d) components of the currents. Simulations results using MATLAB/Simulink software are presented to validate the proposed control scheme for fault conditions into the grid as well as for normal working conditions.\",\"PeriodicalId\":38610,\"journal\":{\"name\":\"International Journal of Systems, Control and Communications\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Systems, Control and Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/ijscc.2020.10027725\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Systems, Control and Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijscc.2020.10027725","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
Control of PMSG wind electrical system in network context and during the MPP tracking process
This study presents a control strategy for grid-connected WES based on a permanent magnet synchronous generator (PMSG). The power system comprises five PMSG-based 2 MW which connected to the dc-bus with rectifiers, whereas the grid-side inverter is connected to the power grid throughout a grid-side filter. The objectives of grid-side inverter are to deliver the energy from the PMSGs side to the power grid, to regulate the dc-bus and to achieve unity power factor (UPF). The generator side converters are employed to control the velocities of the PMSGs with maximum power point tracking algorithm. Moreover, a pitch control algorithm is used. The proposed vector control technique (VCT) is able to fully decouple the quadrature (q) and direct (d) components of the currents. Simulations results using MATLAB/Simulink software are presented to validate the proposed control scheme for fault conditions into the grid as well as for normal working conditions.