基于高粒度时间信息的慕课行为预测

Cheng Ye, J. Kinnebrew, Gautam Biswas, Brent J. Evans, D. Fisher, G. Narasimham, Katherine A. Brady
{"title":"基于高粒度时间信息的慕课行为预测","authors":"Cheng Ye, J. Kinnebrew, Gautam Biswas, Brent J. Evans, D. Fisher, G. Narasimham, Katherine A. Brady","doi":"10.1145/2724660.2728687","DOIUrl":null,"url":null,"abstract":"In this paper, we present early research evaluating the predictive power of a variety of temporal features across student subpopulations with distinctive behaviors at the beginning of the course. Initial results illustrate that these features predict important differences across the subpopulations and over time in the courses. Ultimately, these results have implications for effectively targeting adaptive scaffolding tailored to the particular intentions and goals of subpopulations in MOOCs.","PeriodicalId":20664,"journal":{"name":"Proceedings of the Second (2015) ACM Conference on Learning @ Scale","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2015-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":"{\"title\":\"Behavior Prediction in MOOCs using Higher Granularity Temporal Information\",\"authors\":\"Cheng Ye, J. Kinnebrew, Gautam Biswas, Brent J. Evans, D. Fisher, G. Narasimham, Katherine A. Brady\",\"doi\":\"10.1145/2724660.2728687\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present early research evaluating the predictive power of a variety of temporal features across student subpopulations with distinctive behaviors at the beginning of the course. Initial results illustrate that these features predict important differences across the subpopulations and over time in the courses. Ultimately, these results have implications for effectively targeting adaptive scaffolding tailored to the particular intentions and goals of subpopulations in MOOCs.\",\"PeriodicalId\":20664,\"journal\":{\"name\":\"Proceedings of the Second (2015) ACM Conference on Learning @ Scale\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"30\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Second (2015) ACM Conference on Learning @ Scale\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2724660.2728687\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Second (2015) ACM Conference on Learning @ Scale","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2724660.2728687","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30

摘要

在本文中,我们提出了早期的研究,评估了在课程开始时具有不同行为的学生亚群中各种时间特征的预测能力。初步结果表明,这些特征预测了亚群之间和课程中不同时间的重要差异。最终,这些结果对有效地针对mooc中亚群体的特定意图和目标定制适应性脚手架具有启示意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Behavior Prediction in MOOCs using Higher Granularity Temporal Information
In this paper, we present early research evaluating the predictive power of a variety of temporal features across student subpopulations with distinctive behaviors at the beginning of the course. Initial results illustrate that these features predict important differences across the subpopulations and over time in the courses. Ultimately, these results have implications for effectively targeting adaptive scaffolding tailored to the particular intentions and goals of subpopulations in MOOCs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信