拟双环图的第一和第二Zagreb指标的上界和下界

IF 1 Q4 CHEMISTRY, MULTIDISCIPLINARY
Majid Aghel, A. Erfanian, T. Dehghan-Zadeh
{"title":"拟双环图的第一和第二Zagreb指标的上界和下界","authors":"Majid Aghel, A. Erfanian, T. Dehghan-Zadeh","doi":"10.22052/IJMC.2021.202592.1466","DOIUrl":null,"url":null,"abstract":"The aim of this paper is to give an upper and lower bounds for the first and second Zagreb indices of quasi bicyclic graphs. For a simple graph G, we denote M1(G) and M2(G), as the sum of deg2(u) overall vertices u in G and the sum of deg(u)deg(v) of all edges uv of G, respectively. The graph G is called quasi bicyclic graph if there exists a vertex x ∈ V (G) such that G−x is a connected bicyclic graph. The results mentioned in this paper, are mostly new or an improvement of results given by authors for quasi unicyclic graphs in [1].","PeriodicalId":14545,"journal":{"name":"Iranian journal of mathematical chemistry","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Upper and Lower Bounds for the First and Second Zagreb Indices of Quasi Bicyclic Graphs\",\"authors\":\"Majid Aghel, A. Erfanian, T. Dehghan-Zadeh\",\"doi\":\"10.22052/IJMC.2021.202592.1466\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of this paper is to give an upper and lower bounds for the first and second Zagreb indices of quasi bicyclic graphs. For a simple graph G, we denote M1(G) and M2(G), as the sum of deg2(u) overall vertices u in G and the sum of deg(u)deg(v) of all edges uv of G, respectively. The graph G is called quasi bicyclic graph if there exists a vertex x ∈ V (G) such that G−x is a connected bicyclic graph. The results mentioned in this paper, are mostly new or an improvement of results given by authors for quasi unicyclic graphs in [1].\",\"PeriodicalId\":14545,\"journal\":{\"name\":\"Iranian journal of mathematical chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2021-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iranian journal of mathematical chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22052/IJMC.2021.202592.1466\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian journal of mathematical chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22052/IJMC.2021.202592.1466","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文的目的是给出拟双环图的第一和第二萨格勒布指数的上界和下界。对于一个简单的图G,我们将M1(G)和M2(G)分别表示为G中所有顶点u的deg2(u)和G中所有边uv的deg(u) dev的和。如果存在顶点x∈V (G),使得G−x是连通双环图,则称图G为拟双环图。本文所提到的结果,大多是作者在[1]中关于拟单环图的新结果或改进的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Upper and Lower Bounds for the First and Second Zagreb Indices of Quasi Bicyclic Graphs
The aim of this paper is to give an upper and lower bounds for the first and second Zagreb indices of quasi bicyclic graphs. For a simple graph G, we denote M1(G) and M2(G), as the sum of deg2(u) overall vertices u in G and the sum of deg(u)deg(v) of all edges uv of G, respectively. The graph G is called quasi bicyclic graph if there exists a vertex x ∈ V (G) such that G−x is a connected bicyclic graph. The results mentioned in this paper, are mostly new or an improvement of results given by authors for quasi unicyclic graphs in [1].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Iranian journal of mathematical chemistry
Iranian journal of mathematical chemistry CHEMISTRY, MULTIDISCIPLINARY-
CiteScore
2.10
自引率
7.70%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信