{"title":"双各向异性介质中圆柱形部分波叠加的矢量光束","authors":"A. Novitsky, L. Barkovsky","doi":"10.1088/0305-4470/39/42/010","DOIUrl":null,"url":null,"abstract":"The exact solutions for arbitrary electromagnetic beams in bianisotropic media are constructed. The solutions are expressed using tensor Fourier transform whose physical meaning is the superposition of partial waves. We use cylindrical partial waves (vector Bessel beams) and derive exact and paraxial solutions for cylindrically symmetric beams in isotropic, bi-isotropic and bianisotropic media. The comparison of the spatial evolution of vector Bessel–Gauss beams in different media is made.","PeriodicalId":87442,"journal":{"name":"Journal of physics A: Mathematical and general","volume":"67 1","pages":"13355 - 13369"},"PeriodicalIF":0.0000,"publicationDate":"2006-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Vector beams as the superposition of cylindrical partial waves in bianisotropic media\",\"authors\":\"A. Novitsky, L. Barkovsky\",\"doi\":\"10.1088/0305-4470/39/42/010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The exact solutions for arbitrary electromagnetic beams in bianisotropic media are constructed. The solutions are expressed using tensor Fourier transform whose physical meaning is the superposition of partial waves. We use cylindrical partial waves (vector Bessel beams) and derive exact and paraxial solutions for cylindrically symmetric beams in isotropic, bi-isotropic and bianisotropic media. The comparison of the spatial evolution of vector Bessel–Gauss beams in different media is made.\",\"PeriodicalId\":87442,\"journal\":{\"name\":\"Journal of physics A: Mathematical and general\",\"volume\":\"67 1\",\"pages\":\"13355 - 13369\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of physics A: Mathematical and general\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/0305-4470/39/42/010\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of physics A: Mathematical and general","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/0305-4470/39/42/010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Vector beams as the superposition of cylindrical partial waves in bianisotropic media
The exact solutions for arbitrary electromagnetic beams in bianisotropic media are constructed. The solutions are expressed using tensor Fourier transform whose physical meaning is the superposition of partial waves. We use cylindrical partial waves (vector Bessel beams) and derive exact and paraxial solutions for cylindrically symmetric beams in isotropic, bi-isotropic and bianisotropic media. The comparison of the spatial evolution of vector Bessel–Gauss beams in different media is made.