黎曼状态流形上基于误差的控制系统:与并行传输相关的主前推映射的性质

IF 1 4区 数学 Q1 MATHEMATICS
S. Fiori
{"title":"黎曼状态流形上基于误差的控制系统:与并行传输相关的主前推映射的性质","authors":"S. Fiori","doi":"10.3934/mcrf.2020031","DOIUrl":null,"url":null,"abstract":"The objective of the paper is to contribute to the theory of error-based control systems on Riemannian manifolds. The present study focuses on system where the control field influences the covariant derivative of a control path. In order to define error terms in such systems, it is necessary to compare tangent vectors at different points using parallel transport and to understand how the covariant derivative of a vector field along a path changes after such field gets parallely transported to a different curve. It turns out that such analysis relies on a specific map, termed principal pushforward map. The present paper aims at contributing to the algebraic theory of the principal pushforward map and of its relationship with the curvature endomorphism of a state manifold.","PeriodicalId":48889,"journal":{"name":"Mathematical Control and Related Fields","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Error-based control systems on Riemannian state manifolds: Properties of the principal pushforward map associated to parallel transport\",\"authors\":\"S. Fiori\",\"doi\":\"10.3934/mcrf.2020031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The objective of the paper is to contribute to the theory of error-based control systems on Riemannian manifolds. The present study focuses on system where the control field influences the covariant derivative of a control path. In order to define error terms in such systems, it is necessary to compare tangent vectors at different points using parallel transport and to understand how the covariant derivative of a vector field along a path changes after such field gets parallely transported to a different curve. It turns out that such analysis relies on a specific map, termed principal pushforward map. The present paper aims at contributing to the algebraic theory of the principal pushforward map and of its relationship with the curvature endomorphism of a state manifold.\",\"PeriodicalId\":48889,\"journal\":{\"name\":\"Mathematical Control and Related Fields\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Control and Related Fields\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3934/mcrf.2020031\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Control and Related Fields","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/mcrf.2020031","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

本文的目的是为黎曼流形上基于误差的控制系统的理论做出贡献。本文主要研究控制场影响控制路径协变导数的系统。为了在这样的系统中定义误差项,有必要使用平行移动来比较不同点上的切矢量,并了解矢量场沿路径的协变导数在该矢量场平行移动到不同曲线后是如何变化的。事实证明,这种分析依赖于一个特定的地图,称为主推进地图。本文旨在对主推进映射及其与状态流形曲率自同态关系的代数理论作出贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Error-based control systems on Riemannian state manifolds: Properties of the principal pushforward map associated to parallel transport
The objective of the paper is to contribute to the theory of error-based control systems on Riemannian manifolds. The present study focuses on system where the control field influences the covariant derivative of a control path. In order to define error terms in such systems, it is necessary to compare tangent vectors at different points using parallel transport and to understand how the covariant derivative of a vector field along a path changes after such field gets parallely transported to a different curve. It turns out that such analysis relies on a specific map, termed principal pushforward map. The present paper aims at contributing to the algebraic theory of the principal pushforward map and of its relationship with the curvature endomorphism of a state manifold.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematical Control and Related Fields
Mathematical Control and Related Fields MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.50
自引率
8.30%
发文量
67
期刊介绍: MCRF aims to publish original research as well as expository papers on mathematical control theory and related fields. The goal is to provide a complete and reliable source of mathematical methods and results in this field. The journal will also accept papers from some related fields such as differential equations, functional analysis, probability theory and stochastic analysis, inverse problems, optimization, numerical computation, mathematical finance, information theory, game theory, system theory, etc., provided that they have some intrinsic connections with control theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信