SAMoSA:感应活动与运动和亚采样音频

Vimal Mollyn, Karan Ahuja, Dhruv Verma, Chris Harrison, Mayank Goel
{"title":"SAMoSA:感应活动与运动和亚采样音频","authors":"Vimal Mollyn, Karan Ahuja, Dhruv Verma, Chris Harrison, Mayank Goel","doi":"10.1145/3550284","DOIUrl":null,"url":null,"abstract":"Despite in and human activity recognition systems, a practical, power-efficient, and privacy-sensitive activity recognition system has remained elusive. State-of-the-art activity recognition systems often require power-hungry and privacy-invasive audio data. This is especially challenging for resource-constrained wearables, such as smartwatches. To counter the need audio-based activity system, we make use of compute-optimized IMUs sampled 50 Hz to act for detecting activity events. detected, multimodal deep augments the data captured on a smartwatch. subsample this 1 spoken unintelligible, power consumption on mobile devices. multimodal deep recognition of 92 2% 26 activities","PeriodicalId":20463,"journal":{"name":"Proc. ACM Interact. Mob. Wearable Ubiquitous Technol.","volume":"18 1","pages":"132:1-132:19"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"SAMoSA: Sensing Activities with Motion and Subsampled Audio\",\"authors\":\"Vimal Mollyn, Karan Ahuja, Dhruv Verma, Chris Harrison, Mayank Goel\",\"doi\":\"10.1145/3550284\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Despite in and human activity recognition systems, a practical, power-efficient, and privacy-sensitive activity recognition system has remained elusive. State-of-the-art activity recognition systems often require power-hungry and privacy-invasive audio data. This is especially challenging for resource-constrained wearables, such as smartwatches. To counter the need audio-based activity system, we make use of compute-optimized IMUs sampled 50 Hz to act for detecting activity events. detected, multimodal deep augments the data captured on a smartwatch. subsample this 1 spoken unintelligible, power consumption on mobile devices. multimodal deep recognition of 92 2% 26 activities\",\"PeriodicalId\":20463,\"journal\":{\"name\":\"Proc. ACM Interact. Mob. Wearable Ubiquitous Technol.\",\"volume\":\"18 1\",\"pages\":\"132:1-132:19\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proc. ACM Interact. Mob. Wearable Ubiquitous Technol.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3550284\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proc. ACM Interact. Mob. Wearable Ubiquitous Technol.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3550284","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

尽管在人类活动识别系统中,一个实用的,节能的,隐私敏感的活动识别系统仍然是难以捉摸的。最先进的活动识别系统通常需要耗电和侵犯隐私的音频数据。这对于资源有限的可穿戴设备(如智能手表)来说尤其具有挑战性。为了满足对基于音频的活动系统的需求,我们利用计算机优化的采样50 Hz的imu来检测活动事件。检测到,多模态深度增强了智能手表上捕获的数据。子样本这1讲不清,在移动设备上耗电。多式联运深度识别92 2% 26项活动
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SAMoSA: Sensing Activities with Motion and Subsampled Audio
Despite in and human activity recognition systems, a practical, power-efficient, and privacy-sensitive activity recognition system has remained elusive. State-of-the-art activity recognition systems often require power-hungry and privacy-invasive audio data. This is especially challenging for resource-constrained wearables, such as smartwatches. To counter the need audio-based activity system, we make use of compute-optimized IMUs sampled 50 Hz to act for detecting activity events. detected, multimodal deep augments the data captured on a smartwatch. subsample this 1 spoken unintelligible, power consumption on mobile devices. multimodal deep recognition of 92 2% 26 activities
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信