{"title":"新一代多速率多波长无源光网络的动态时间分配和波长分配","authors":"Jingjing Zhang, N. Ansari","doi":"10.1109/ICC.2010.5502243","DOIUrl":null,"url":null,"abstract":"Driven by emerging bandwidth-hungry applications, next generation passive optical networks (NG-PONs) provide higher bandwidth to users by using more wavelengths and increasing data rates of optical network units (ONUs). On the other hand, for smooth upgrading, NG-PON is desired to be backward compatible with the current TDM PONs where data rates of ONUs remain unchanged. Thus, both high-rate ONUs and low-rate ONUs may coexist in NG-PON. The key parameters of bandwidth allocation in this multi-rate multi-wavelength network include achieving fairness among all ONUs, encouraging low-rate ONUs to increase their data rates, and utilizing wavelength resources efficiently. This paper illustrates contributions in three main aspects. First, we define rate-dependent utilities for ONUs, which serve as the basis for bandwidth arbitration among low-rate and high-rate ONUs. Second, to achieve fairness among ONUs, we employ water-filling idea and formulate a utility max-min fair bandwidth allocation scheme. Third, to efficiently utilize the wavelengths, we map the resource allocation problem in multi-wavelength PON into a multi-processor scheduling problem and employ a heuristic algorithm to address the NP-hard wavelength assignment problem.","PeriodicalId":6405,"journal":{"name":"2010 IEEE International Conference on Communications","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2010-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Dynamic Time Allocation and Wavelength Assignment in Next Generation Multi-Rate Multi-Wavelength Passive Optical Networks\",\"authors\":\"Jingjing Zhang, N. Ansari\",\"doi\":\"10.1109/ICC.2010.5502243\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Driven by emerging bandwidth-hungry applications, next generation passive optical networks (NG-PONs) provide higher bandwidth to users by using more wavelengths and increasing data rates of optical network units (ONUs). On the other hand, for smooth upgrading, NG-PON is desired to be backward compatible with the current TDM PONs where data rates of ONUs remain unchanged. Thus, both high-rate ONUs and low-rate ONUs may coexist in NG-PON. The key parameters of bandwidth allocation in this multi-rate multi-wavelength network include achieving fairness among all ONUs, encouraging low-rate ONUs to increase their data rates, and utilizing wavelength resources efficiently. This paper illustrates contributions in three main aspects. First, we define rate-dependent utilities for ONUs, which serve as the basis for bandwidth arbitration among low-rate and high-rate ONUs. Second, to achieve fairness among ONUs, we employ water-filling idea and formulate a utility max-min fair bandwidth allocation scheme. Third, to efficiently utilize the wavelengths, we map the resource allocation problem in multi-wavelength PON into a multi-processor scheduling problem and employ a heuristic algorithm to address the NP-hard wavelength assignment problem.\",\"PeriodicalId\":6405,\"journal\":{\"name\":\"2010 IEEE International Conference on Communications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE International Conference on Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICC.2010.5502243\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICC.2010.5502243","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Dynamic Time Allocation and Wavelength Assignment in Next Generation Multi-Rate Multi-Wavelength Passive Optical Networks
Driven by emerging bandwidth-hungry applications, next generation passive optical networks (NG-PONs) provide higher bandwidth to users by using more wavelengths and increasing data rates of optical network units (ONUs). On the other hand, for smooth upgrading, NG-PON is desired to be backward compatible with the current TDM PONs where data rates of ONUs remain unchanged. Thus, both high-rate ONUs and low-rate ONUs may coexist in NG-PON. The key parameters of bandwidth allocation in this multi-rate multi-wavelength network include achieving fairness among all ONUs, encouraging low-rate ONUs to increase their data rates, and utilizing wavelength resources efficiently. This paper illustrates contributions in three main aspects. First, we define rate-dependent utilities for ONUs, which serve as the basis for bandwidth arbitration among low-rate and high-rate ONUs. Second, to achieve fairness among ONUs, we employ water-filling idea and formulate a utility max-min fair bandwidth allocation scheme. Third, to efficiently utilize the wavelengths, we map the resource allocation problem in multi-wavelength PON into a multi-processor scheduling problem and employ a heuristic algorithm to address the NP-hard wavelength assignment problem.