关于随机图中的诱导路径、洞和树

Kunal Dutta, C. Subramanian
{"title":"关于随机图中的诱导路径、洞和树","authors":"Kunal Dutta, C. Subramanian","doi":"10.1137/1.9781611975062.15","DOIUrl":null,"url":null,"abstract":"We study the concentration of the largest induced paths, trees and cycles (holes) in the Erdos-Renyi random graph model and prove a 2-point concentration for the size of the largest induced path and hole, for all p = Ω(n ln n). As a corollary, we obtain an improvement over a result of Erdos and Palka concerning the size of the largest induced tree in a random graph. Further, we study the path chromatic number and tree chromatic number i.e. the smallest number of parts into which the vertex set of a graph can be partitioned such that every The arguments involve the application of a modified version of a probabilistic inequality of Krivelevich, Sudakov, Vu and Wormald.","PeriodicalId":21749,"journal":{"name":"SIAM J. Discret. Math.","volume":"55 1","pages":"279-303"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"On Induced Paths, Holes and Trees in Random Graphs\",\"authors\":\"Kunal Dutta, C. Subramanian\",\"doi\":\"10.1137/1.9781611975062.15\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the concentration of the largest induced paths, trees and cycles (holes) in the Erdos-Renyi random graph model and prove a 2-point concentration for the size of the largest induced path and hole, for all p = Ω(n ln n). As a corollary, we obtain an improvement over a result of Erdos and Palka concerning the size of the largest induced tree in a random graph. Further, we study the path chromatic number and tree chromatic number i.e. the smallest number of parts into which the vertex set of a graph can be partitioned such that every The arguments involve the application of a modified version of a probabilistic inequality of Krivelevich, Sudakov, Vu and Wormald.\",\"PeriodicalId\":21749,\"journal\":{\"name\":\"SIAM J. Discret. Math.\",\"volume\":\"55 1\",\"pages\":\"279-303\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM J. Discret. Math.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1137/1.9781611975062.15\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM J. Discret. Math.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/1.9781611975062.15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

我们研究了Erdos- renyi随机图模型中最大诱导路径、树和环(洞)的集中,并证明了对于所有p = Ω(n ln n)的最大诱导路径和洞的大小的2点集中。作为推论,我们得到了Erdos和Palka关于随机图中最大诱导树大小的改进结果。进一步,我们研究了路径色数和树色数,即图的顶点集可以被划分成的最小部分数,使得每个参数都涉及到Krivelevich, Sudakov, Vu和Wormald的概率不等式的修改版本的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Induced Paths, Holes and Trees in Random Graphs
We study the concentration of the largest induced paths, trees and cycles (holes) in the Erdos-Renyi random graph model and prove a 2-point concentration for the size of the largest induced path and hole, for all p = Ω(n ln n). As a corollary, we obtain an improvement over a result of Erdos and Palka concerning the size of the largest induced tree in a random graph. Further, we study the path chromatic number and tree chromatic number i.e. the smallest number of parts into which the vertex set of a graph can be partitioned such that every The arguments involve the application of a modified version of a probabilistic inequality of Krivelevich, Sudakov, Vu and Wormald.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信