正交迭代与交替最小二乘的等价性

A. Dax
{"title":"正交迭代与交替最小二乘的等价性","authors":"A. Dax","doi":"10.4236/alamt.2020.102002","DOIUrl":null,"url":null,"abstract":"This note explores the relations between two different methods. The first one is the Alternating Least Squares (ALS) method for calculating a rank-k approximation of a real m×n matrix, A. This method has important applications in nonnegative matrix factorizations, in matrix completion problems, and in tensor approximations. The second method is called Orthogonal Iterations. Other names of this method are Subspace Iterations, Simultaneous Iterations, and block-Power method. Given a real symmetric matrix, G, this method computes k dominant eigenvectors of G. To see the relation between these methods we assume that G = AT A. It is shown that in this case the two methods generate the same sequence of subspaces, and the same sequence of low-rank approximations. This equivalence provides new insight into the convergence properties of both methods.","PeriodicalId":65610,"journal":{"name":"线性代数与矩阵理论研究进展(英文)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The Equivalence between Orthogonal Iterations and Alternating Least Squares\",\"authors\":\"A. Dax\",\"doi\":\"10.4236/alamt.2020.102002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This note explores the relations between two different methods. The first one is the Alternating Least Squares (ALS) method for calculating a rank-k approximation of a real m×n matrix, A. This method has important applications in nonnegative matrix factorizations, in matrix completion problems, and in tensor approximations. The second method is called Orthogonal Iterations. Other names of this method are Subspace Iterations, Simultaneous Iterations, and block-Power method. Given a real symmetric matrix, G, this method computes k dominant eigenvectors of G. To see the relation between these methods we assume that G = AT A. It is shown that in this case the two methods generate the same sequence of subspaces, and the same sequence of low-rank approximations. This equivalence provides new insight into the convergence properties of both methods.\",\"PeriodicalId\":65610,\"journal\":{\"name\":\"线性代数与矩阵理论研究进展(英文)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"线性代数与矩阵理论研究进展(英文)\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://doi.org/10.4236/alamt.2020.102002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"线性代数与矩阵理论研究进展(英文)","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.4236/alamt.2020.102002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文探讨了两种不同方法之间的关系。第一种是交替最小二乘(ALS)方法,用于计算一个实数m×n矩阵a的秩-k近似。这种方法在非负矩阵分解、矩阵补全问题和张量近似中有重要的应用。第二种方法称为正交迭代。这种方法的其他名称是子空间迭代、同步迭代和块功率方法。给定一个实对称矩阵G,该方法计算G的k个显性特征向量。为了了解这两种方法之间的关系,我们假设G = AT a。在这种情况下,这两种方法生成了相同的子空间序列和相同的低秩近似序列。这种等价性为两种方法的收敛性提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Equivalence between Orthogonal Iterations and Alternating Least Squares
This note explores the relations between two different methods. The first one is the Alternating Least Squares (ALS) method for calculating a rank-k approximation of a real m×n matrix, A. This method has important applications in nonnegative matrix factorizations, in matrix completion problems, and in tensor approximations. The second method is called Orthogonal Iterations. Other names of this method are Subspace Iterations, Simultaneous Iterations, and block-Power method. Given a real symmetric matrix, G, this method computes k dominant eigenvectors of G. To see the relation between these methods we assume that G = AT A. It is shown that in this case the two methods generate the same sequence of subspaces, and the same sequence of low-rank approximations. This equivalence provides new insight into the convergence properties of both methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
56
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信